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Abstract- Indexing techniques are used on big data for efficient 

information retrieval from a very large and complex datasets 

with distributed storage in cloud computing. The availability of 

broad band access, mobile devices such as smartphones and 

tablets, body-sensor devices and cloud applications have greatly 

contributed to the rapid growth in data volume or big data. The 

existing indexing techniques are inadequate to satisfy the 

indexing requirements of big data. An efficient index scheme is 

required to meet the indexing requirement for efficient retrieval 

of big data. Finding approximate nearest neighbour (ANN) is 

essential in huge database for efficient similarity search to return 

the nearest neighbour of a given query. Density sensitive Hashing 

(DSH) achieved good performance but the discriminating 

information on data points are not fully utilised aside using long 

binary hash codes to achieve high precision-recall which slows 

performance as the binary code length increases and hence 

increase storage cost and search time. To address the 

aforementioned problems, this research proposes Geometric 

Similarity Preserving Embedding-Based hashing (Geo-SPEBH) 

method for improving the search accuracy and memory cost for 

large-scale-image retrieval. The technique aimed at preserving 

the underlying geometric information among data, and exploit 

the prior information that utilises reconstructive relationship of 

the data to learn compact and effective hash codes. The Geo-

SPEBH makes full use of the geometric structure properties of 

data. An extensive experiment conducted on a cloud simulator 

like CloudSim should show that the proposed scheme 

outperforms state-of-the-art-techniques. 

Keywords: Big Data, Hashing, Indexing, Image, Similarity 

preserving, CloudSim, Interface. 

I. INTRODUCTION 

loud computing is a web-based application that provides 

a shared pool of resources. The advance in mobile 

technology have allowed mobile devices such as smartphones 

and tablets to be used in a variety of different applications 

(Thilkanathan et al., 2014). The availability of internet such as 

with the use of the wide spread broadband Internet access 

(Huang et al. 2010), coupled with these hand held devices 

(mobile devices), resulted to the easy collection of digital 

information in form of structured and unstructured (Gartner et 

al., 2013) data, had contributed to the availability of large 

volumes of data known as big data. Tremendous amount of 

data are generated every day in Manufacturing, Business, 

financial services, Science sectors and human personal lives. 

Adequate and proper processing of these data is required to 

open new discoveries and knowledge concerning markets, 

societies and human environment (Cheng et al., 2013). As 

unstructured data contributed to the availability of big data, 

they need to be structuralised for its effective understanding 

and processing through some optimised techniques used for 

extracting information. These information extracting 

techniques have been vastly used to extract meaningful 

information from raw or unstructured data (Doan, et al., 

2009).  

Big data has greatly changed and influenced researches in 

sciences. The Sloan digital sky survey is used by astronomers 

nowadays as a pool of resources which serve as a data base 

(Agrawal et al., 2012). In the field of astronomy, taking 

pictures of the sky is no longer the largest part of an 

astronomer’s job but that pictures have been indexed in a 

database and other astronomers can make use of object from 

the indexed pictures. In business sector, purchased 

transactions data are efficiently stored in the cloud. Biological 

data and experimental data are stored in a public storage 

facility and databases are created such that other biologists 

and scientists can make use of these generated biological and 

scientific data. 

Many hashing based indexing techniques were also proposed 

to overcome the growing volume and search time for affective 

retrieval and management of big data. Data-independent (Lv, 

et al., 2007), (Dong, et al., 2008).Data-dependent (Gong & 

Lazebnik, 2011), (Liu, et al., 2011), (Abubakar, et al., 

2018),(Boukari et al., 2019) hashing based approaches, and 

improved data-dependent hashing techniques (Norouzi & 

Blei, 2011), (Norouzi, et al., 2013), (Gong, et al.,  2013), 

(Gong, et al,, 2012), were also proposed to reduced storage 

cost and to improve the precision rate of image retrieval in a 

large data base. The paramount decision when choosing and 

using supervised hashing techniques is based on the choice of 

similarity encoding approach. (Guosheng, et al., 2015), 

proposed a supervised FastHash algorithm with a two-step 

learning strategy that uses binary code inference and followed 

it by binary classification that uses an ensemble of decision 

trees. 

The drawback of these schemes is that the performance of the 

system degrade as the database increases which results to low 

speed, retrieval accuracy, and high search time.  

Researchers are often faced with the difficulties of designing a 

suitable research platform when carrying out research in cloud 

computing (Georgia & George, 2013). Also, the cost of 

setting up a cloud for the benefit of conducting research by 
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scholars on live cloud is highly exorbitant (Pericherla S. S., 

2016). 

II. RELATED WORKS 

2.1 Indexing Techniques 

Yueming et al., (2015), proposed a hashing technique that 

uses two hash codes of different length for stored images in 

the database and the queries. The compact hash code is used 

for the stored images in the database to reduce storage cost 

while the long hash code is used for the queries for searching 

accuracy. To retrieve images from the database, the Hamming 

distance of the long hash code is computed for the query and 

the cyclical concatenation of the compact hash code of the 

stored images for better precision-recall rate.  

Ye &Xuelong, (2016), proposed a method to preserve the 

underlying geometric information among data. The authors 

explore the sparse reconstructive relationship of data to learn 

compact hash codes. Usually, it gets over fitting in measuring 

the empirical accuracy on labelled data as such information 

provided by each bit is utilised to obtain desired properties of 

hash codes. The information theoretic constraint is 

incorporated into the relaxed empirical fitness as a 

regularising term to obtain the objective function. Equations 

(1) and (2) gives the empirical fitness and the objective 

function respectively. 

𝐽 𝑊 =  
1

2
 𝑇𝑟 𝑊𝑇𝑋𝑙𝑇𝑋𝑙

𝑇𝑊       (1) 

𝐽𝑙 𝑊 =  
1

2
 𝑇𝑟 𝑊𝑇𝑋𝑙𝑇𝑋𝑙

𝑇𝑊 + 
𝜆

2
𝑇𝑟 𝑊𝑇𝑋𝑋𝑇𝑊     (2)  

Where  𝑇𝑟 𝑊𝑇𝑋𝑙𝑇𝑋𝑙
𝑇𝑊  is the information theoretic term. 

Sequential learning for hashing method is used to maximise 

the objective function in (2) to learn the weighted matrix W to 

design the hash function as in equation (3)  . 

𝑋 𝑋𝑙 = 𝑠𝑖𝑔𝑛(𝑊𝑇𝑋𝑙)        (3) 

The weight matrix W and the sparse weight matrix optimally 

learn by minimising the objective function in equation (4). 

 𝑊, 𝑆 = arg 𝑚𝑖𝑛 𝐽2(𝑊,𝑆)
𝑤,𝑠

  … (4) 

In the data dependent techniques, data points are of utmost 

consideration in designing hash functions. Binary code 

embedding methods provides high compression efficiency and 

fast similarity computation. Heo et al., (2015), proposed a 

novel hypersphere-based hashing function to map more spatial 

coherent data points into a binary hash code with a new binary 

code distance function the spherical Hamming distance 

suitable to the hypersphere-based coding scheme. 

The binary code embedding function 𝐻(𝑥) maps data in 𝑅𝐷  

points into the binary hash code.  

Spherical Hamming distance proposed is designed to measure 

the distance between two binary codes computed as in 

equation (5). 

𝑑𝑠𝐻𝐷 𝑏𝑖 , 𝑏𝑗  =  
 𝑏𝑖  𝑏𝑗  

 𝑏𝑖  𝑏𝑗  
 …                      (5) 

Where 𝑏𝑖  𝑏𝑗denotes the number of common +1 bit between 

two binary codes which can be easily computed by the AND 

operations. The authors employ the search time minimisation 

approach to balance the distribution of data points to different 

binary code and to also improve the search accuracy even for 

longer hash codes. The balance partitioning of data points is 

done through equation (6). 

𝑃𝑟  𝑕𝑖 𝑥 =  +1 =  
1

2
, 𝑥 ∈ 𝑋, 1 ≤ 𝑖 ≤ 𝑙 …     (6) 

Maximally utilise the long hash codes for high precision, the 

hash functions were designed to be independently of one 

another. This independency between the hash functions is 

achieved through equation (7). 

𝑃𝑟  𝑕𝑖 𝑥 =  +1  . 𝑃𝑟 𝑕𝑗  𝑥 =  +1 =
1

2
 .

1

2
=

1

4
 ... (7) 

The proposed scheme is generalised to a kernel one. A non-

linear map 𝛷 ∶  𝑋 → 𝐹 from the input space X.  

Jin et al., (2014), proposed a novel hashing algorithm for 

effective high dimensional nearest neighbour search. DSH 

uses k-means to roughly partition the data set into k-groups. 

Then for each pair of adjacent group, DSH generate one 

projection vector which can well split the two corresponding 

group. From the generated projections, DSH select the final 

ones according to the maximum entropy principle in order to 

maximise the information provided by each bit. Given 𝑛𝑖  data 

points 𝑋 =  𝑥𝑖 , … , 𝑥𝑛   ∈  𝑅𝑖𝑙 ∗𝑛 , is to find 𝐿 hash functions to 

map a data point 𝑥 to a 𝐿-bits hash code. 

𝐻 𝑥 =   𝑕1 𝑥 ,   𝑕2 𝑥 , … , 𝑕𝐿(𝑥) , where 𝑕1 𝑥  ∈   0, 1  is 

the 𝑙 − 𝑡𝑕 hash function.  

In geometrical perspective, 𝑤𝑙  defines a hyperplane. The 

points on the sides of the hyperplane have the opposite labels. 

This hash function, the hash bits of two points has the 

probability proportionate to the cosine of the angle between 

them. Basically, two points identify as 𝑥𝑖 , 𝑥𝑗 ∈  𝑅𝑑  we have 

equation (8). 

𝑃𝑟 =  𝑕𝑙 𝑥𝑖 = 𝑕𝑙 𝑥𝑗  = 1 −
1

𝜋
𝑐𝑜𝑠−1  

𝑥𝑖
𝑇𝑥𝑗

 𝑥𝑖  𝑥𝑗 
           (8) 

Based on this characteristic, the DSH has the probabilistic 

guarantees for retrieving data within (1 + 𝚎) times the 

optimal similarity, and the query times that are sublinear with 

respect to 𝑛, where 𝚎 is an error term.  

In (Jin et al., 2014), despite the gains in DSH, there is minimal 

improvement in performance as the code length increases 

because the geometric discriminative structure information of 

data is ignored and this result to a suboptimal performance of 

DSH.  The DSH uses hyperplane-based hashing function to 

encode high-dimensional data and to partitioned data points 

into two sets and assigned two different binary codes (-1 or 

+1) depending on which set each point is assigned to. Where 
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in the proposed Geo-SPEBH, hypersphere-based hashing 

function are used to encode proximity regions in high-

dimensional spaces. The proposed method takes into account, 

the distribution of data points for efficient hash functions 

design.   

𝑆𝑆𝐸 =    𝑥 − 𝜇𝑝 
2

𝑥 ∈ 𝑆𝑝
𝑘
𝑝=1           (9) 

Where 𝜇𝑝  is the representative point of the 𝑝 − 𝑡𝑕 group 𝑆𝑝 .  

The use of hypersphere improves the performance of search 

accuracy (precision) as the code length increases. To minimise 

distortion in DSH, the centre point is used as the 

representative for each group. In large scale applications, it 

took long time for the k-means for the k-means to converge. 

After 𝑝 iteration, the k-means is stopped. Also, the best group 

number is usually, is the large group with smaller error. But a 

large number of group could lead to high computational cost 

in the quantisation step. Here the number groups decide the 

maximum length of code generate as in equation (10). 

𝑘 = 𝛼𝐿   (10)   

Where 𝐿 is the code length and 𝛼is a parameter.  

Now DSH uses the quantised result denoted by k groups 

𝑆1  , … , 𝑆𝑘and the 𝑖 − 𝑡𝑕 group has the centre  𝜇𝑖𝑝  to guide in 

generating the projections. Thenearest neighbours matrix is 

used in defining the 𝑟 − adjacent groups that is 𝑆1and 𝑆𝑘 , if 

and only if 𝑊𝑖𝑗 = 1. So the DSH now picks only those 

projections that can separate two adjacent groups properly. 

Furthermore, for each 𝑆1and 𝑆𝑘  (pair groups), the DSH 

technique utilises the median plane between the centres of the 

adjacent groups as the hyperplane to separate points. The 

median plane is given as equation (11), whereas the hash 

function with respect to the plane is as equation (12). 

𝑊𝑖𝑗 =  
1,𝑖𝑓  𝜇1∈ 𝑁𝑟 𝜇 𝑗  𝑜𝑟  𝜇 𝑗∈ 𝑁𝑟(𝜇 𝑖)

0,𝑜𝑡𝑕𝑒𝑟𝑤𝑖𝑠𝑒
            (11) 

Where 𝑁𝑟(𝜇𝑖) denotes the set of 𝑟 nearest neighbours of 𝜇𝑖 .  

(𝑥 −
𝜇 𝑖+𝜇 𝑗

2
)𝑇(𝜇𝑖 − 𝜇𝑖) = 0           (12) 

𝑕(𝑥) =  
1 𝑖𝑓 𝑊𝑇 ≥ 𝑡

0 𝑜𝑡𝑕𝑒𝑟𝑤𝑖𝑠𝑒
  

Where 𝑤 =  𝜇1 − 𝜇2, 𝑡 =
𝜇 𝑖+𝜇 𝑗

2
)𝑇(𝜇1 − 𝜇2) 

Although hyperplane-based hashing function is used to obtain 

the median plane between the centres of adjacent groups, 

geometric discriminative data points should be bounded and 

mapped into binary hash codes by fining tighter closed region, 

is used to separate points. Again, a good binary code 

maximise information given by each bit. That is, maximum 

information is given by a binary bit that has a balanced 

partitioning of the data points. For this, each of the 

candidate’s projection DSH computes its entropy. So for the 

entropy in DSH with regards to projections is computed by 

equation (13). 

𝑃𝑖0 =  
| 𝑇𝑖0  |

|𝑇𝑖0  |+  |𝑇𝑖1  |
 , 𝑃𝑖1 =  

| 𝑇𝑖1  |

|𝑇𝑖0  |+  |𝑇𝑖1  |
  (13) 

Where 𝑇𝑖0 and 𝑇𝑖1 are data points partitions, and 𝑃𝑖0 and 𝑃𝑖1 

are projections.  

When there is huge database, computing time increases, as 

such, the entropy is estimated by using the centre of the group 

and assign a weight based on the group’s size. This is 

achieved a significant reduction in time for computing 

entropy, in equation (14) is used. 

𝑃𝑖0 =  𝑉𝑠𝑡𝑠∈𝑐𝑖0
, 𝑃𝑖0 =  𝑉𝑡𝑡∈ 𝑐𝑖1

      (14) 

𝑆𝑆𝐸 =    𝑥 − 𝜇𝑝 
2

𝑥 ∈ 𝑆𝑝
𝑘
𝑝=1        (15) 

The k-means with 𝑝 iterations to generate 𝛼𝐿 groups requires 

o(𝛼𝐿𝑝𝑛𝑑).  

To find the 𝑟 −adjacent groups, ( 𝛼𝐿)2 𝑑 + 𝑟  is required. 

0(𝛼𝐿𝑟𝑑) for each pair of adjacent groups, generates the 

projections and the intercept.  

To compute the entropy for all the candidate projections, 

𝑜((𝛼𝐿)2𝑑𝑟) is required. 

The top 𝐿 projections can be found within o(𝛼𝐿𝑟𝑙𝑜𝑔 𝛼𝐿𝑟 ) 

and the binary codes for the data points can be obtained in 

𝑜(𝐿𝑛𝑑). This shows that the computational complexity of 

DSH at the training phase is dominated by the k-means 

clustering algorithm. An efficient hashing scheme should 

handle large amount of data size but DSH fails to improve as 

the code length increases. Therefore, an efficient hash 

function is desirable. 

The computational complexity of DSH at the testing phase 

with a given query point needs 𝑜(𝐿𝑑) to transform the query 

point into a binary code.  

DSH is evaluated on high-dimensional nearest neighbours 

search problems using three large scale real-world data sets 

conducted on experiments. Results from experiments show 

that scheme is suitable for high dimensional situations. With 

the codes of 48 bits and 96 bits, DSH has better precision-

recall rate than state-of-the-art-techniques used as comparison 

algorithm. Using of hyperplane-based hashing function incurs 

more computational cost as 𝑑 + 1 hyperplanes are required to 

define a close region for a 𝑑-dimensional space.  DSH 

generates more projections which are less important and 

becomes redundant. The redundancy of projections degrades 

the performance of DSH and thus does not scale well with 

huge databases. For this, an optimised algorithm is require to 

balance the trade-off between search accuracy and search time 

and still maintain memory cost.  

The body literature is substantial on data-independent and 

data-dependent hash-based indexing methods that uses 

projection information and learning data for big data indexing 

in cloud computing, but it’s limited on those that utilises 

discriminative information in images to preserve similar data 

points. Despite their successes, the above mentioned 
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techniques are limited in that the geometric information of 

data are not effectively and adequately preserved while others 

have neglected the potential use of the structural properties of 

data for learning compact and effective hash codes for 

efficient hash-based big data retrieval in mobile cloud 

computing environment. The long hash codes consumes large 

memory of the stored data in the database thereby increasing 

the storage cost while the short hash codes gives 

unsatisfactory performance in terms of precision.  

The Geo-SPEBH aim at overcoming the drawback of data-

independent based hashing methods and data-dependent based 

hash methods. To guarantee the performance Geo-SPEBH 

will increase as the code length increases, Geo-SPEBH adopt 

the framework as DSH. While DSH uses the geometric 

structure of data to guide the projections (hash tables) 

selection, Geo-SPEBH makes use of the geometric properties 

of principal component of features, which are confirm to be 

very discriminative, and ensure that fewer features are 

inserted into the hash table. By using fewer features into the 

hash table, the computational cost and memory cost will be 

greatly reduced.  The geometric properties of the principal 

components of features are found to be robust to handle 

translation and rotation effect (Umarani Jayaraman, 2013). 

III. RESEARCH METHODOLOGY 

3.1 The proposed System  

Here we present our proposed system and its operational 

principle. The proposed system is composed by four 

components that performed each specific function to achieve 

the set objectives. The objective of learning hashing-based 

methods is to use the mapping function 𝑕(𝑥) that projects m-

dimensional real valued feature vector to n-dimensional 

binary hash codes and still preserve the similarity among the 

feature vector and the data set. The proposed method can 

preserve the underlying discriminative geometric information 

among the data points. The system explores the magnitude 

structure of geometric features of data. Here the image 

features are indexed from the quantised hashing results. The 

Geo-SPEBH uses hypersphere-based hashing function for 

computing the binary hash codes with a joint algorithm that 

optimise search accuracy and search time simultaneously. 

Samples of data points are contained in a databasewhich will 

be indexed to reduce storage cost, computational cost and 

optimise the search accuracy and time simultaneously. Here 

we represent the data points’ samples as 𝑥1 , 𝑥2 , 𝑥3 , … , 𝑥𝑁 , and 

the database is represented as 𝑋 given below: 

𝑋 =  𝑥1 , 𝑥2 , 𝑥3 , … 𝑥𝑛 , … , 𝑥𝑁 ∈  𝑅𝑑 × 𝑁denotes the data points 

contained in the database. Where 𝑋 is the database and 𝑅𝑑 × 𝑁  

represents the dimensional space of size 𝑁. Then we design 

our hash function that will map these data points to a k-bit 

binary hash code by equation (1) 

𝐻 𝑥 = {𝑕1 𝑥 , …𝑕𝑘(𝑥)}  ∈ {−1, 1}𝑘  (1) 

Where 𝑘 is the length of the binary hash code. 

Figure 1 gives the conceptual framework of the proposed 

system. The working principle of the proposed system is 

given in details with a detailed explanation of the 

responsibilities of each of the component that made up the 

model. This architecture incorporates the solutions to the 

identified problems in the various components that made up 

the proposed system.   
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Figure 1. Conceptual framework of the proposed System 

1. Firstly, features are extracted 

2.  Secondly, a hashing function to project each sample 

data point into compact binary hash codes was used. 

The hash function depends on the distribution of data 

to generate hash table.  

3. Thirdly, the geometric similarity preserving 

component was use to preserve the similarity among 

the data points so that the original structure property 

of the data points are retained.  

4. Fourthly, the balance partitioning component was 

used to distribute data points equally to each binary 

code. This is achieved if the hash functions are 

independent. 

5. Fifthly, then optimise the search accuracy and search 

time simultaneously by incorporating the similarity 

preserving and the balanced partitioning components. 

6. Then the data are stored in the data storage as a 

service (DaaS) provided by service providers in 

cloud computing environment.   
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3.1.1 Geometric Similarity Preserving 

This component of the proposed system is responsible for 

preserving the similarities of two sample data points in the 

training data set in our propose system. Given a database 𝑋, 

two data samples 𝑋𝑖 and 𝑋𝑗   contained in the training set of 

data. Extracting the similarity between the two data samples 

as 𝑄𝑖𝑗  from the similar geometric feature points of image data 

is done. Hashing methods require geometric coordinate 

properties for similarity preserving. Next, the data points that 

are similar are ensured to have similar hash codes with small 

hamming distance.  

The similarities among the sample data points detected using 

SIFT is then preserved as a similarity preserving term, and 

then we further seek a code that maps similar data points to 

similar binary hash codes known as similarity preserving. The 

Hamming distance is then minimised between similar data 

points and the corresponding similar binary hash codes. The 

similarity preserving term, and Hamming distance 

minimisation between similar data points and it corresponding 

similar binary hash code are represented in equations (6) and 

(7) respectively. We sum the similarity preserving term as the 

summation of 𝑥𝑖  samples of data points from 1 to 𝑁 plus the 

summation of 𝑥𝑗  corresponding similar binary hash code from 

1 to 𝑁 as in equation (6). Hamming distance is minimised the 

by taking the absolute values of the of the similarity term as in 

equation (7) (Junfeng et al., 2011).  

Hamming distance = taking the absolute (abs) values of 

Similarity term. 

𝑄 𝑦 =   𝑥𝑖=1,…,𝑁  𝑥𝑖=1,…,𝑁 =   𝑥𝑖𝑗 =1,…,𝑁   (6) 

𝑄𝐻 𝑦 =    𝑄𝑖𝑗 ||𝑌𝑖 − 𝑌𝑗 ||2
𝑗=1,…,𝑁𝑖=1,…,𝑁   (7) 

where𝑄𝑖𝑗 is the sample data that has similarity, 𝑄(𝑦) is the 

similarity preserving term and 𝑄𝐻 𝑦  is the absolute value of 

the similarity term 𝑄 𝑦 .  

For efficient search accuracy with respect to similarity search, 

similar data points are mapped to similar binary hash codes 

for similarity preserving. This means that similar data points 

must have similar binary hash codes with small Hamming 

distance by minimisation.   The Hamming distance to 

minimised with respect to:𝑦𝑖 ∈   0, 1 𝑘  

 𝑦𝑖 = 0 𝑖     (8) 
1

𝑛
 𝑦𝑖𝑦𝑖𝑇 = 𝐼𝑖     (9) 

Where the constraints (8) require each bit to fire 50% of the 

time, and the constraint (9) requires the bits to be 

uncorrelated. And, y is the set of all 𝑌𝑖 . Then from equation 

(7), samples with high similarity or with bigger similarity 𝑄𝑖𝑗  

will have similar binary hash codes with smaller Hamming 

distance||𝑌𝑖 − 𝑌𝑗 ||2. 𝑌𝑖and𝑌𝑗  are the similar hash codes. 

The algorithm for similarity preserving is given in figure 2. 

Algorithm 1: Similarity Preserving 

1. Start 

2. Input: n training sample dataset 𝑋 = {𝑥1, 𝑥2 , 𝑥3 , … , 𝑥𝑛} in the 

database; 𝑤𝑖𝑗  the similarity between 𝑥𝑖  𝑎𝑛𝑑 𝑥𝑗  //𝑢𝑝  𝑎𝑛𝑑 𝑢𝑞  are the 

hash codes for 𝑥𝑖  and 𝑥𝑗 //; c, Sim 

3. Sum = 0, Ham = 0 

4. 𝑓𝑜𝑟 𝑖 = 1 𝑡𝑜 𝑐//c the number of iteration for 𝑖// 
5. 𝑓𝑜𝑟 𝑗 = 1 𝑡𝑜 𝑉//𝑉 is the number of iteration for 𝑗// 
6.                 Get 𝑊 𝑖, 𝑗  
7.                 Sum = Sum + 𝑖  
8. 𝑗 = 𝑗 + 1  
9. 𝑖𝑓 𝑖 ≤ 𝑐 goto step 6 

10.                    end if 

11.             end for 

12. Sim = Sum 

13.  break; 

14.  //minimising Hamming distance// 

15. 𝑓𝑜𝑟 𝑖 = 1 𝑡𝑜 𝑐 

16. 𝑓𝑜𝑟 𝑗 = 1 𝑡𝑜 𝑐 

17.                 Get 𝑦 𝑖 , 𝑦(𝑗); //𝑢𝑝  𝑎𝑛𝑑 𝑢𝑞  are similar binary hash 

codes// 

18.   Ham = Ham + (𝑦 𝑖 − 𝑦(𝑗))**2 

19. 𝑗 = 𝑗 + 1 

20. 𝑖𝑓 𝑗 ≤ 𝑐 goto step 17 

21.                        end if 

22. 𝑖 = 𝑖 + 1 

23. 𝑖𝑓 𝑖 ≤ 𝑐 goto step 17 

24.                                end if  

25.                         end for 

26.                 end for 

27. SimM = Ham 

28.  Print Sum, SimM//output// 

29.  Stop  

Figure 2. Algorithm for Similarity Preserving 

3.1.2 Balance Partitioning for independence. 

To have uniform distribution of data points in hash bucket, we 

make each hash function independent of one another. That is 

the functionality of one hash function does not depend on the 

other one to function. This is because each hash function is 

depended on itself to distribute data points in an evenly 

manner to different hash codes. Therefore, each hash function 

is given the opportunity of becoming 0 or 1 since binary digits 

are represented by zeros (0’s) and ones (1’s). This means that 

for hash functions to be independent, each hash function 

should have the chance of being one or zero and the different 

binary hash codes are independent of each other as in equation 

(4) above. 

Independence of hash functions is demonstrated in a scenario 

as follows: As a typical scenario, the probability that an event 

say 𝐵𝑖  be a hash function that is one (1). 𝐵𝑖 is the event that 

𝑕𝑖 𝑥 = 1. Then define two events 𝐵𝑖and 𝐵𝑗 , next to be 

independent if and only if the probability of 𝐵𝑖 = 1 and the 

probability of 𝐵𝑗 = 1is equivalent to the probability of 𝐵𝑖 = 1 

multiply by the probability of 𝐵𝑗 = 1 as in equation (10). 

Here, similar bits are mapped into same bucket with high 

probability of having equal chance of becoming one (1) by 

defining independence of each bit. Any of equation (4) and (5) 

is used to balance the partitioning of data points for each bit.  
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𝑝𝑟[𝑕𝑖 𝑥𝑖 = 1] =  
1

2
, 𝑥 ∈ 𝑋, 1 ≤ 𝑖 ≤ 𝑡    (4) 

𝑁𝑖 =  𝑁𝑖
2𝑀

𝑖=1   (11) 

Where 𝑁𝑖  is the number of training samples in the 𝑖𝑡𝑕 bucket 

and 𝑀 is the number of buckets. To achieve independence 

between two bits given that 𝑥 ∈ 𝑋 and 1 ≤ 𝑖 < 𝑗 ≤ 𝑡 where 𝑖 
and 𝑗 are the 𝑖𝑡𝑕 and 𝑗𝑡𝑕 data points, and 𝑡 is the threshold, 

hash functions are design to be independent and the data 

points are distributed equally to each hash bucket.  

𝑝𝑟 𝑕𝑖 𝑥 = 1, 𝑕𝑗  𝑥 =  1 =  𝑝𝑟 𝑕𝑖 𝑥 = 1  . 𝑝𝑟  𝑕𝑗  𝑥 = 1  

=
1

2
 .

1

2
 =

1

4
          (5) 

𝑃𝑟 𝐵𝑖 ∩ 𝐵𝑗 = 𝑃𝑟 𝐵𝑖  . Pr⁡[𝐵𝑗]  (10) 

𝑝𝑟[𝑕𝑖 𝑥𝑖 = 1] =  
1

2
, 𝑥 ∈ 𝑋, 1 ≤ 𝑖 ≤ 𝑡 

The intersection is the equal chance of the code bit being a 

binary hash code 1.  

The next is to incorporate the similarity preserving term with 

the balance partitioning components or terms together to 

simultaneously improve the search accuracy and search time. 

We insert the data points into each bucket a 

𝑁𝑖 =
𝑁

2𝑀
 .    (11) 

Balance partitioning for distributing data points to different 

binary codes by independent hash functions is in figure 3.  

Algorithm 2: Balanced Partitioning 

1. Start 
2. Let V = 2**M 

3. Input:  N; M//N is the number of training sample in the 𝑖𝑡𝑕 
bucket//  

4. //M is the number of buckets// 

5. 𝑓𝑜𝑟 𝑖 = 1 𝑡𝑜 𝑉//𝑉 is the memory location for 2**𝑀// 

6. get 𝑁(𝑖) 

7. BP = N(𝑖) ∗∗ 2 

8. 𝑖 = 𝑖 + 1  
9. 𝑖𝑓 𝑖 ≤ 𝑉 goto step 6 
10.      end if 

11.     end for 
12.  Print BP//output balance partitioning// 

13.  Stop  

Figure 3. Algorithm for Balance Partitioning 

3.1.3 Joint Optimisation.  

In this section, we integrate the similarity preserving term 

𝑄(𝑌) for search accuracy and the minimum information 

criterion for the search time to form a single entity. To enable 

a high search accuracy with fast search time, the joint 

optimisation component of the proposed system is formulated 

and is responsible for the simultaneous optimisation of the 

search accuracy and search time. A parametrisation of a linear 

function is performed for easy optimisation, and a relaxation 

is perform.  

The joint optimisation is responsible for the computation of 

the hash bit that will be used for query and the identification 

of the bucket with the same hash bits with the query, and to 

also oversee the loading of data samples from the selected 

buckets into the memory.  Here, the hash function 

independent is made to be independent to distribute data 

points evenly or equally to different binary hash codes. To 

minimise the time complexity, each bucket will contain equal 

number of samples to have a balanced buckets. This is done to 

minimise the search time. To have equal number of samples in 

each bucket to balance the buckets,  𝑁 =
𝑁

2𝑀
  (Junfeng et al., 

2011) equation  (11) 

Here, the search accuracy is improved by minimising the 

Hamming distance between similar data points.  

𝑄 𝑦 =  𝑠𝑢𝑚 𝑜𝑓 𝑠𝑎𝑚𝑝𝑙𝑒𝑠 𝑜𝑓 𝑥 𝑓𝑟𝑜𝑚 𝑖 𝑡𝑜 𝑁 + 

𝑠𝑢𝑚 𝑜𝑓 𝑠𝑎𝑚𝑝𝑙𝑒𝑠 𝑜𝑓 𝑥 𝑓𝑟𝑜𝑚 𝑗 𝑡𝑜 𝑁. Mathematically, this can 

be expressed as: 

𝑄 𝑦  𝑥𝑖=1,…𝑁 +  𝑥𝑗=1,…𝑁   (12) 

The similarity preserving term and the balance partitioning are 

incorporated together for simultaneous improvement in search 

accuracy and search time, (Junfeng et al., 2011). 

3.1.3. Similarity preserving term 𝑄 𝑦  

To improve the accuracy of searches in a database, we use the 

similarity preserving term which contains the similarity 

features among the data points, 𝑄 𝑦 , with a minimised 

Hamming distance in equation (7), Junfeng et al., 2011.  

The joint optimisation algorithm is presented in figure 4. 

Algorithm 3: Joint Optimisation  

1. Start 

2. Input: the training dataset𝑋𝑖 , 𝑖 = 1,2,3,… , 𝑁, similarity matrix 𝑊 

and 𝑊 = 𝑊𝑖𝑗 ; the number of required bits 𝐾 to map the full 

dataset as hash codes; BP; N; M; 
3. Initialise: Sum = 0; Sim = 0; SimM = 0; BP = 0; V = 2**M; yi = 

0; JointO = 0//jointO is the memory location for joint optimisation   

4. 𝑓𝑜𝑟 𝑖 = 1 𝑡𝑜 𝑐 

5. 𝑓𝑜𝑟 𝑗 = 1 𝑡𝑜 𝑐 

6.                        Get y(𝑖), y(𝑗), x(𝑖, 𝑗) 

7. Sum = Sum + (𝑦 𝑖 − 𝑦(𝑗))**2 
8.                        j = j + 1  

9. 𝑖𝑓 𝑗 ≤ 𝑐 goto step 6 
10.                        end if 

11. 𝑖 = 𝑖 + 1 

12. 𝑖𝑓 𝑖 ≤ 𝑐 goto step 17 
13.                                end if  

14.                         end for 
15.                 end for 

16. Sim = Sum 

17.                    break; 

18. 𝑓𝑜𝑟 𝑖 = 1 𝑡𝑜 𝑉 

19.                              get 𝑁(𝑖) 

20.                            BP = N(𝑖) ∗∗ 2 

21. 𝑖 = 𝑖 + 1  
22. 𝑖𝑓 𝑖 ≤ 𝑉 goto step 40 
23.                            end if 

24.                      end for 

25.  Print Sim, BP 
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26.  //Incorporating similarity preserving term and balanced 

partitioning// 

27. JointO = Sim + BP 

28. //computing 𝑢𝑖 // 

29. 𝑇 𝑎, 𝑏  = 0, swap = 0 

30.  Get x 
31.  Get b 

32. 𝑓𝑜𝑟 𝑖 = 1 𝑡𝑜 𝑎 

33. 𝑓𝑜𝑟 𝑗 = 𝑖 + 1 𝑡𝑜 𝑏 

34.                                 Get 𝑇 𝑖, 𝑗  
35.                                 j = j + 1  

36. 𝑖𝑓 𝑗 ≤ 𝑏 goto step 55 
37. i = i + 1 

38. 𝑖𝑓 𝑖 ≤ 𝑎 goto step 55 
39.                                      end if  

40.                                  end if 
41.                              end for 

42.                       end for 

43. 𝑓𝑜𝑟 𝑖 = 1 𝑡𝑜 𝑎 

44. 𝑓𝑜𝑟 𝑖 = 1 𝑡𝑜 𝑏 

45. Swap = 𝑇 𝑖, 𝑗  
46. 𝑇 𝑖, 𝑗 = 𝑇(𝑗, 𝑖) 

47. 𝑇 𝑗, 𝑖 = 𝑠𝑤𝑎𝑝 

48. 𝑕(𝑖) = 𝑠𝑖𝑔𝑛(𝑇 𝑗, 𝑖 ∗ 𝑥 𝑖 − 𝑏//T is the projection matrix of 

𝑑 × 𝑀 and 𝑏 is a vector// 

49. 𝑗 = 𝑗 + 1 

50. 𝑖𝑓 𝑗 ≤ 𝑏 goto step 45 

51. 𝑖 = 𝑖 + 1 

52. 𝑖𝑓 𝑖 ≤ 𝑎 goto step 44 
53.                                        end if  

54.                                  end if 

55.                              end for 
56.                       end for 

57. for i = 1 

58. Print h(i) 

59. 𝑖 = 𝑖 + 1 

60. 𝑖𝑓 𝑖 ≤ 𝑎 goto step 78 
61.             end if 

62.  end for         

63.  Stop  

Figure 4. Joint Optimised Algorithm for Search Accuracy and Time 

IV. EXPERIMENTAL SETUP 

This section provides and avenue for evaluating the proposed 

technique and make a comparison to the state-of-the-art-

techniques.  

4.1 Performance metrics 

The Geo-SPBH will be compared with state-of-the-art-

techniques to obtain the mean average precision based on 

parameter analysis, the precision-recall rate, and the search 

accuracy and search time trade-off. We implement our method 

to measure the performance of retrieval result on the mean 

average precision (MAP) using the SIFT 1B dataset. The 

MAP measures the average of precision scores for the queries. 

It is the area under the precision-recall curve for a set of 

queries. A large value of MAP will indicate a better 

performance.  

4.2 Evaluation Techniques 

The algorithms used in the evaluation of the proposed system 

are the DSH, KLSH, LSH, SIKH. 

1. Density Sensitive Hashing: Density sensitive hashing 

is a semi-supervised based hashing techniques that 

combined the characteristics of data-independent and 

data-dependent hashing techniques. The projections 

are generated based on selective principles. This 

technique avoids the complete random selection and 

generates the projections based on selective 

principles (Jin et al., 2014). thismethod is an 

extension of LSH. 

2. Locality Sensitive Hashing: Locality sensitive 

hashing is a hashing based technique that does not 

depend on the distribution of data for projection 

generation. LSH generates its projections randomly. 

The vectors used for projection generation are 

randomly sample from a p-stable distribution. It is an 

unsupervised technique that apply to change 

detection domain (Datar, et al., 2004) 

3. Kernerlised Locality Sensitive Hashing: KLSH 

generalises the LSH to the kernel space (Kulis & 

Grauman, 2009). 

4. Shift-Invariant Kernel Hashing (Raginsky & 

Lazebnik, 2009): The SIKH is based on the random 

feature hashing for approximating the shift-invariant 

kernels. 

5. Geo-SPEBH: This is the proposed method to be 

compared with the above mentioned algorithms. 

4.3 Programming tools used 

All the experiments were conducted and run on a 3.40 GHz 

CPU with four cores and 16 G RAM, in a Java software tool 

built on CloudSim for experimentation, simulation and 

implementation. The CloudSim is configured with 1 data 

centre on 100 cloudlets with the capacity of accepting input a 

output size of 300 each  and length of 5000.  

4.4 Results 

To generate discriminative binary hash codes that needs only 

small number bits to code a huge amount of data in a database 

to yield high search accuracy and an improved search time 

with less memory consumption.  

Table 1. SIFT 1Billion Data Set use in implementing the existing system 

Dataset Dimension 
No. of base 

vectors 

No. of 

query 

vectors 

No. of learn 
vectors 

SIFT 1B 128 1,000,000,000 10,000 100,000,000 

4.4.1 Implemented Results 

SIFT 1B dataset from simulation results carried out on the 

existing algorithm implemented on the proposed system and 

the results were compared. The proposed Geo-SPEBH 

algorithm is implemented and compared the result with state-

of-the-art-techniques. The based algorithm (DSH) and other 

existing state-of-the-art techniques are run with the new 

components and the results are obtained and compared. The 

results obtained shows that the proposed system outperform 
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the existing techniques based on the mean average precision 

results as shown in table 2. 

Table 2. Simulation Results for the Proposed and Existing Methods 

 
 SIFT 1B Mean Average Precision (%) 

 Code length (bits) 

METHODS 8 16 32 48 64 80 96 

LSH 0.0459 0.0687 0.0895 0.1005 0.1515 0.1534 0.1719 

DSH 0.0600 0.1250 0.3434 0.1300 0.1507 0.1616 0.2501 

SIKH 0.0503 0.0509 0.0641 0.0687 0.0723 0.0898 0.1235 

KLSH 0.0547 0.0590 0.0900 0.1109 0.1194 0.1387 0.1466 

GSPEBH 0.0688 0.1299 0.3906 0.1414 0.1677 0.1916 0.2605 

 

 

Figure 5. The Mean Average Precision of all the Algorithms on SIFT 1B 
Dataset. 

4.2 Discussion 

The SIFT BM datasetis a dataset that consist of one million 

SIFT features represented by 128 dimension vectors. The 

number of base vectors is 1,000,000,000 while the query 

vectors 10, 000, 100,000,000 vectors are used for learning. 

This dataset is run with the old algorithm (DSH) with varied 

number of bits, 8, 16, 34, 48, 64, 80, 96 to obtain the mean 

average precision (MAP) for each query. We select 1K data 

points as the queries and the remaining are used to form the 

gallery database. The point retrieved is seen as the true 

neighbour if it lies in the top 2 percentile points closest to the 

query. It is measured by the Euclidean distance in the original 

space. The data points in the database for every query are 

ranked according to their Hamming distances to the query.  

V. CONCLUSION 

It can be seen that the data-independent based methods 

recorded a very low performance when the code length is 

short but achieved high performance when the code length is 

long. This methods are LSH, SIKH, and KLSH. From table 2 

above, it can be seen that our proposed method outperform the 

compared methods as it recorded high MAP when the code 

length is short and still maintain performance when the code 

length increases, and the memory cost is low compared to the 

base-line methods on the SIFT 1B dataset for all code lengths. 

The low memory cost recoded by our proposed algorithm 

indicate that it can handle large amount of data (huge 

database). Table 2 gives the Mean Average Precision results 

for the SIFT dataset for all the compared methods. Given 0.3 

Mean Average Precision obtain from the results above, our 

Geo-SPEBH requires 64 bits to encode each image in the 

sample dataset. On the other hand, the compared methods 

requires more than 64 bits up to 80 bits to encode each image 

in the database.  

Further research should be directed towards finding a solution 

to balancing the trade-off between precision-recall, and the 

measure the performance based on search time. Furthermore, 

the data collected from different sources in a raw form such as 

student records, health records, mathematical and statistical 

analysis cannot be effectively analysed. An advanced 

technique is required so that data can be extracted from 

different sources to structured them in a format that can be 

used for analysis.  
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