
International Journal of Research and Scientific Innovation (IJRSI) | Volume VI, Issue VI, June 2019 | ISSN 2321–2705

www.rsisinternational.org Page 214

Geometric Similarity Preserving Embedding-Based

Hashing for Big Data in Cloud Computing

Boukari Souley
1
, Abubakar Usman Othman

1

1
Faculty of Science, Department of Mathematical Sciences, Abubakar Tafawa Balewa University, Bauchi, Nigeria.

Abstract- Indexing techniques are used on big data for efficient

information retrieval from a very large and complex datasets

with distributed storage in cloud computing. The availability of

broad band access, mobile devices such as smartphones and

tablets, body-sensor devices and cloud applications have greatly

contributed to the rapid growth in data volume or big data. The

existing indexing techniques are inadequate to satisfy the

indexing requirements of big data. An efficient index scheme is

required to meet the indexing requirement for efficient retrieval

of big data. Finding approximate nearest neighbour (ANN) is

essential in huge database for efficient similarity search to return

the nearest neighbour of a given query. Density sensitive Hashing

(DSH) achieved good performance but the discriminating

information on data points are not fully utilised aside using long

binary hash codes to achieve high precision-recall which slows

performance as the binary code length increases and hence

increase storage cost and search time. To address the

aforementioned problems, this research proposes Geometric

Similarity Preserving Embedding-Based hashing (Geo-SPEBH)

method for improving the search accuracy and memory cost for

large-scale-image retrieval. The technique aimed at preserving

the underlying geometric information among data, and exploit

the prior information that utilises reconstructive relationship of

the data to learn compact and effective hash codes. The Geo-

SPEBH makes full use of the geometric structure properties of

data. An extensive experiment conducted on a cloud simulator

like CloudSim should show that the proposed scheme

outperforms state-of-the-art-techniques.

Keywords: Big Data, Hashing, Indexing, Image, Similarity

preserving, CloudSim, Interface.

I. INTRODUCTION

loud computing is a web-based application that provides

a shared pool of resources. The advance in mobile

technology have allowed mobile devices such as smartphones

and tablets to be used in a variety of different applications

(Thilkanathan et al., 2014). The availability of internet such as

with the use of the wide spread broadband Internet access

(Huang et al. 2010), coupled with these hand held devices

(mobile devices), resulted to the easy collection of digital

information in form of structured and unstructured (Gartner et

al., 2013) data, had contributed to the availability of large

volumes of data known as big data. Tremendous amount of

data are generated every day in Manufacturing, Business,

financial services, Science sectors and human personal lives.

Adequate and proper processing of these data is required to

open new discoveries and knowledge concerning markets,

societies and human environment (Cheng et al., 2013). As

unstructured data contributed to the availability of big data,

they need to be structuralised for its effective understanding

and processing through some optimised techniques used for

extracting information. These information extracting

techniques have been vastly used to extract meaningful

information from raw or unstructured data (Doan, et al.,

2009).

Big data has greatly changed and influenced researches in

sciences. The Sloan digital sky survey is used by astronomers

nowadays as a pool of resources which serve as a data base

(Agrawal et al., 2012). In the field of astronomy, taking

pictures of the sky is no longer the largest part of an

astronomer’s job but that pictures have been indexed in a

database and other astronomers can make use of object from

the indexed pictures. In business sector, purchased

transactions data are efficiently stored in the cloud. Biological

data and experimental data are stored in a public storage

facility and databases are created such that other biologists

and scientists can make use of these generated biological and

scientific data.

Many hashing based indexing techniques were also proposed

to overcome the growing volume and search time for affective

retrieval and management of big data. Data-independent (Lv,

et al., 2007), (Dong, et al., 2008).Data-dependent (Gong &

Lazebnik, 2011), (Liu, et al., 2011), (Abubakar, et al.,

2018),(Boukari et al., 2019) hashing based approaches, and

improved data-dependent hashing techniques (Norouzi &

Blei, 2011), (Norouzi, et al., 2013), (Gong, et al., 2013),

(Gong, et al,, 2012), were also proposed to reduced storage

cost and to improve the precision rate of image retrieval in a

large data base. The paramount decision when choosing and

using supervised hashing techniques is based on the choice of

similarity encoding approach. (Guosheng, et al., 2015),

proposed a supervised FastHash algorithm with a two-step

learning strategy that uses binary code inference and followed

it by binary classification that uses an ensemble of decision

trees.

The drawback of these schemes is that the performance of the

system degrade as the database increases which results to low

speed, retrieval accuracy, and high search time.

Researchers are often faced with the difficulties of designing a

suitable research platform when carrying out research in cloud

computing (Georgia & George, 2013). Also, the cost of

setting up a cloud for the benefit of conducting research by

C

International Journal of Research and Scientific Innovation (IJRSI) | Volume VI, Issue VI, June 2019 | ISSN 2321–2705

www.rsisinternational.org Page 215

scholars on live cloud is highly exorbitant (Pericherla S. S.,

2016).

II. RELATED WORKS

2.1 Indexing Techniques

Yueming et al., (2015), proposed a hashing technique that

uses two hash codes of different length for stored images in

the database and the queries. The compact hash code is used

for the stored images in the database to reduce storage cost

while the long hash code is used for the queries for searching

accuracy. To retrieve images from the database, the Hamming

distance of the long hash code is computed for the query and

the cyclical concatenation of the compact hash code of the

stored images for better precision-recall rate.

Ye &Xuelong, (2016), proposed a method to preserve the

underlying geometric information among data. The authors

explore the sparse reconstructive relationship of data to learn

compact hash codes. Usually, it gets over fitting in measuring

the empirical accuracy on labelled data as such information

provided by each bit is utilised to obtain desired properties of

hash codes. The information theoretic constraint is

incorporated into the relaxed empirical fitness as a

regularising term to obtain the objective function. Equations

(1) and (2) gives the empirical fitness and the objective

function respectively.

𝐽 𝑊 =
1

2
 𝑇𝑟 𝑊𝑇𝑋𝑙𝑇𝑋𝑙

𝑇𝑊 (1)

𝐽𝑙 𝑊 =
1

2
 𝑇𝑟 𝑊𝑇𝑋𝑙𝑇𝑋𝑙

𝑇𝑊 +
𝜆

2
𝑇𝑟 𝑊𝑇𝑋𝑋𝑇𝑊 (2)

Where 𝑇𝑟 𝑊𝑇𝑋𝑙𝑇𝑋𝑙
𝑇𝑊 is the information theoretic term.

Sequential learning for hashing method is used to maximise

the objective function in (2) to learn the weighted matrix W to

design the hash function as in equation (3) .

𝑋 𝑋𝑙 = 𝑠𝑖𝑔𝑛(𝑊𝑇𝑋𝑙) (3)

The weight matrix W and the sparse weight matrix optimally

learn by minimising the objective function in equation (4).

 𝑊, 𝑆 = arg 𝑚𝑖𝑛 𝐽2(𝑊,𝑆)
𝑤,𝑠

 … (4)

In the data dependent techniques, data points are of utmost

consideration in designing hash functions. Binary code

embedding methods provides high compression efficiency and

fast similarity computation. Heo et al., (2015), proposed a

novel hypersphere-based hashing function to map more spatial

coherent data points into a binary hash code with a new binary

code distance function the spherical Hamming distance

suitable to the hypersphere-based coding scheme.

The binary code embedding function 𝐻(𝑥) maps data in 𝑅𝐷

points into the binary hash code.

Spherical Hamming distance proposed is designed to measure

the distance between two binary codes computed as in

equation (5).

𝑑𝑠𝐻𝐷 𝑏𝑖 , 𝑏𝑗 =
 𝑏𝑖 𝑏𝑗

 𝑏𝑖 𝑏𝑗
 … (5)

Where 𝑏𝑖 𝑏𝑗denotes the number of common +1 bit between

two binary codes which can be easily computed by the AND

operations. The authors employ the search time minimisation

approach to balance the distribution of data points to different

binary code and to also improve the search accuracy even for

longer hash codes. The balance partitioning of data points is

done through equation (6).

𝑃𝑟 𝑕𝑖 𝑥 = +1 =
1

2
, 𝑥 ∈ 𝑋, 1 ≤ 𝑖 ≤ 𝑙 … (6)

Maximally utilise the long hash codes for high precision, the

hash functions were designed to be independently of one

another. This independency between the hash functions is

achieved through equation (7).

𝑃𝑟 𝑕𝑖 𝑥 = +1 . 𝑃𝑟 𝑕𝑗 𝑥 = +1 =
1

2
 .

1

2
=

1

4
 ... (7)

The proposed scheme is generalised to a kernel one. A non-

linear map 𝛷 ∶ 𝑋 → 𝐹 from the input space X.

Jin et al., (2014), proposed a novel hashing algorithm for

effective high dimensional nearest neighbour search. DSH

uses k-means to roughly partition the data set into k-groups.

Then for each pair of adjacent group, DSH generate one

projection vector which can well split the two corresponding

group. From the generated projections, DSH select the final

ones according to the maximum entropy principle in order to

maximise the information provided by each bit. Given 𝑛𝑖 data

points 𝑋 = 𝑥𝑖 , … , 𝑥𝑛 ∈ 𝑅𝑖𝑙 ∗𝑛 , is to find 𝐿 hash functions to

map a data point 𝑥 to a 𝐿-bits hash code.

𝐻 𝑥 = 𝑕1 𝑥 , 𝑕2 𝑥 , … , 𝑕𝐿(𝑥) , where 𝑕1 𝑥 ∈ 0, 1 is

the 𝑙 − 𝑡𝑕 hash function.

In geometrical perspective, 𝑤𝑙 defines a hyperplane. The

points on the sides of the hyperplane have the opposite labels.

This hash function, the hash bits of two points has the

probability proportionate to the cosine of the angle between

them. Basically, two points identify as 𝑥𝑖 , 𝑥𝑗 ∈ 𝑅𝑑 we have

equation (8).

𝑃𝑟 = 𝑕𝑙 𝑥𝑖 = 𝑕𝑙 𝑥𝑗 = 1 −
1

𝜋
𝑐𝑜𝑠−1

𝑥𝑖
𝑇𝑥𝑗

 𝑥𝑖 𝑥𝑗
 (8)

Based on this characteristic, the DSH has the probabilistic

guarantees for retrieving data within (1 + 𝚎) times the

optimal similarity, and the query times that are sublinear with

respect to 𝑛, where 𝚎 is an error term.

In (Jin et al., 2014), despite the gains in DSH, there is minimal

improvement in performance as the code length increases

because the geometric discriminative structure information of

data is ignored and this result to a suboptimal performance of

DSH. The DSH uses hyperplane-based hashing function to

encode high-dimensional data and to partitioned data points

into two sets and assigned two different binary codes (-1 or

+1) depending on which set each point is assigned to. Where

International Journal of Research and Scientific Innovation (IJRSI) | Volume VI, Issue VI, June 2019 | ISSN 2321–2705

www.rsisinternational.org Page 216

in the proposed Geo-SPEBH, hypersphere-based hashing

function are used to encode proximity regions in high-

dimensional spaces. The proposed method takes into account,

the distribution of data points for efficient hash functions

design.

𝑆𝑆𝐸 = 𝑥 − 𝜇𝑝
2

𝑥 ∈ 𝑆𝑝
𝑘
𝑝=1 (9)

Where 𝜇𝑝 is the representative point of the 𝑝 − 𝑡𝑕 group 𝑆𝑝 .

The use of hypersphere improves the performance of search

accuracy (precision) as the code length increases. To minimise

distortion in DSH, the centre point is used as the

representative for each group. In large scale applications, it

took long time for the k-means for the k-means to converge.

After 𝑝 iteration, the k-means is stopped. Also, the best group

number is usually, is the large group with smaller error. But a

large number of group could lead to high computational cost

in the quantisation step. Here the number groups decide the

maximum length of code generate as in equation (10).

𝑘 = 𝛼𝐿 (10)

Where 𝐿 is the code length and 𝛼is a parameter.

Now DSH uses the quantised result denoted by k groups

𝑆1 , … , 𝑆𝑘and the 𝑖 − 𝑡𝑕 group has the centre 𝜇𝑖𝑝 to guide in

generating the projections. Thenearest neighbours matrix is

used in defining the 𝑟 − adjacent groups that is 𝑆1and 𝑆𝑘 , if

and only if 𝑊𝑖𝑗 = 1. So the DSH now picks only those

projections that can separate two adjacent groups properly.

Furthermore, for each 𝑆1and 𝑆𝑘 (pair groups), the DSH

technique utilises the median plane between the centres of the

adjacent groups as the hyperplane to separate points. The

median plane is given as equation (11), whereas the hash

function with respect to the plane is as equation (12).

𝑊𝑖𝑗 =
1,𝑖𝑓 𝜇1∈ 𝑁𝑟 𝜇 𝑗 𝑜𝑟 𝜇 𝑗∈ 𝑁𝑟(𝜇 𝑖)

0,𝑜𝑡𝑕𝑒𝑟𝑤𝑖𝑠𝑒
 (11)

Where 𝑁𝑟(𝜇𝑖) denotes the set of 𝑟 nearest neighbours of 𝜇𝑖 .

(𝑥 −
𝜇 𝑖+𝜇 𝑗

2
)𝑇(𝜇𝑖 − 𝜇𝑖) = 0 (12)

𝑕(𝑥) =
1 𝑖𝑓 𝑊𝑇 ≥ 𝑡

0 𝑜𝑡𝑕𝑒𝑟𝑤𝑖𝑠𝑒

Where 𝑤 = 𝜇1 − 𝜇2, 𝑡 =
𝜇 𝑖+𝜇 𝑗

2
)𝑇(𝜇1 − 𝜇2)

Although hyperplane-based hashing function is used to obtain

the median plane between the centres of adjacent groups,

geometric discriminative data points should be bounded and

mapped into binary hash codes by fining tighter closed region,

is used to separate points. Again, a good binary code

maximise information given by each bit. That is, maximum

information is given by a binary bit that has a balanced

partitioning of the data points. For this, each of the

candidate’s projection DSH computes its entropy. So for the

entropy in DSH with regards to projections is computed by

equation (13).

𝑃𝑖0 =
| 𝑇𝑖0 |

|𝑇𝑖0 |+ |𝑇𝑖1 |
 , 𝑃𝑖1 =

| 𝑇𝑖1 |

|𝑇𝑖0 |+ |𝑇𝑖1 |
 (13)

Where 𝑇𝑖0 and 𝑇𝑖1 are data points partitions, and 𝑃𝑖0 and 𝑃𝑖1

are projections.

When there is huge database, computing time increases, as

such, the entropy is estimated by using the centre of the group

and assign a weight based on the group’s size. This is

achieved a significant reduction in time for computing

entropy, in equation (14) is used.

𝑃𝑖0 = 𝑉𝑠𝑡𝑠∈𝑐𝑖0
, 𝑃𝑖0 = 𝑉𝑡𝑡∈ 𝑐𝑖1

 (14)

𝑆𝑆𝐸 = 𝑥 − 𝜇𝑝
2

𝑥 ∈ 𝑆𝑝
𝑘
𝑝=1 (15)

The k-means with 𝑝 iterations to generate 𝛼𝐿 groups requires

o(𝛼𝐿𝑝𝑛𝑑).

To find the 𝑟 −adjacent groups, (𝛼𝐿)2 𝑑 + 𝑟 is required.

0(𝛼𝐿𝑟𝑑) for each pair of adjacent groups, generates the

projections and the intercept.

To compute the entropy for all the candidate projections,

𝑜((𝛼𝐿)2𝑑𝑟) is required.

The top 𝐿 projections can be found within o(𝛼𝐿𝑟𝑙𝑜𝑔 𝛼𝐿𝑟)

and the binary codes for the data points can be obtained in

𝑜(𝐿𝑛𝑑). This shows that the computational complexity of

DSH at the training phase is dominated by the k-means

clustering algorithm. An efficient hashing scheme should

handle large amount of data size but DSH fails to improve as

the code length increases. Therefore, an efficient hash

function is desirable.

The computational complexity of DSH at the testing phase

with a given query point needs 𝑜(𝐿𝑑) to transform the query

point into a binary code.

DSH is evaluated on high-dimensional nearest neighbours

search problems using three large scale real-world data sets

conducted on experiments. Results from experiments show

that scheme is suitable for high dimensional situations. With

the codes of 48 bits and 96 bits, DSH has better precision-

recall rate than state-of-the-art-techniques used as comparison

algorithm. Using of hyperplane-based hashing function incurs

more computational cost as 𝑑 + 1 hyperplanes are required to

define a close region for a 𝑑-dimensional space. DSH

generates more projections which are less important and

becomes redundant. The redundancy of projections degrades

the performance of DSH and thus does not scale well with

huge databases. For this, an optimised algorithm is require to

balance the trade-off between search accuracy and search time

and still maintain memory cost.

The body literature is substantial on data-independent and

data-dependent hash-based indexing methods that uses

projection information and learning data for big data indexing

in cloud computing, but it’s limited on those that utilises

discriminative information in images to preserve similar data

points. Despite their successes, the above mentioned

International Journal of Research and Scientific Innovation (IJRSI) | Volume VI, Issue VI, June 2019 | ISSN 2321–2705

www.rsisinternational.org Page 217

techniques are limited in that the geometric information of

data are not effectively and adequately preserved while others

have neglected the potential use of the structural properties of

data for learning compact and effective hash codes for

efficient hash-based big data retrieval in mobile cloud

computing environment. The long hash codes consumes large

memory of the stored data in the database thereby increasing

the storage cost while the short hash codes gives

unsatisfactory performance in terms of precision.

The Geo-SPEBH aim at overcoming the drawback of data-

independent based hashing methods and data-dependent based

hash methods. To guarantee the performance Geo-SPEBH

will increase as the code length increases, Geo-SPEBH adopt

the framework as DSH. While DSH uses the geometric

structure of data to guide the projections (hash tables)

selection, Geo-SPEBH makes use of the geometric properties

of principal component of features, which are confirm to be

very discriminative, and ensure that fewer features are

inserted into the hash table. By using fewer features into the

hash table, the computational cost and memory cost will be

greatly reduced. The geometric properties of the principal

components of features are found to be robust to handle

translation and rotation effect (Umarani Jayaraman, 2013).

III. RESEARCH METHODOLOGY

3.1 The proposed System

Here we present our proposed system and its operational

principle. The proposed system is composed by four

components that performed each specific function to achieve

the set objectives. The objective of learning hashing-based

methods is to use the mapping function 𝑕(𝑥) that projects m-

dimensional real valued feature vector to n-dimensional

binary hash codes and still preserve the similarity among the

feature vector and the data set. The proposed method can

preserve the underlying discriminative geometric information

among the data points. The system explores the magnitude

structure of geometric features of data. Here the image

features are indexed from the quantised hashing results. The

Geo-SPEBH uses hypersphere-based hashing function for

computing the binary hash codes with a joint algorithm that

optimise search accuracy and search time simultaneously.

Samples of data points are contained in a databasewhich will

be indexed to reduce storage cost, computational cost and

optimise the search accuracy and time simultaneously. Here

we represent the data points’ samples as 𝑥1 , 𝑥2 , 𝑥3 , … , 𝑥𝑁 , and

the database is represented as 𝑋 given below:

𝑋 = 𝑥1 , 𝑥2 , 𝑥3 , … 𝑥𝑛 , … , 𝑥𝑁 ∈ 𝑅𝑑 × 𝑁denotes the data points

contained in the database. Where 𝑋 is the database and 𝑅𝑑 × 𝑁

represents the dimensional space of size 𝑁. Then we design

our hash function that will map these data points to a k-bit

binary hash code by equation (1)

𝐻 𝑥 = {𝑕1 𝑥 , …𝑕𝑘(𝑥)} ∈ {−1, 1}𝑘 (1)

Where 𝑘 is the length of the binary hash code.

Figure 1 gives the conceptual framework of the proposed

system. The working principle of the proposed system is

given in details with a detailed explanation of the

responsibilities of each of the component that made up the

model. This architecture incorporates the solutions to the

identified problems in the various components that made up

the proposed system.

 output

Figure 1. Conceptual framework of the proposed System

1. Firstly, features are extracted

2. Secondly, a hashing function to project each sample

data point into compact binary hash codes was used.

The hash function depends on the distribution of data

to generate hash table.

3. Thirdly, the geometric similarity preserving

component was use to preserve the similarity among

the data points so that the original structure property

of the data points are retained.

4. Fourthly, the balance partitioning component was

used to distribute data points equally to each binary

code. This is achieved if the hash functions are

independent.

5. Fifthly, then optimise the search accuracy and search

time simultaneously by incorporating the similarity

preserving and the balanced partitioning components.

6. Then the data are stored in the data storage as a

service (DaaS) provided by service providers in

cloud computing environment.

Hash Function

Geometric Similarity

Preserving

Minimum Distortion

Quantisation

Density Sensitive

Projections Generation

Entropy Based

Projections Selection

Joint Optimisation

Balance Partitioning
Joint Optimisation

Balance Partitioning

Geometric Similarity

Preserving

Hash Function

Us

er

Cloud Storage Domain

(DaaS)

Database

International Journal of Research and Scientific Innovation (IJRSI) | Volume VI, Issue VI, June 2019 | ISSN 2321–2705

www.rsisinternational.org Page 218

3.1.1 Geometric Similarity Preserving

This component of the proposed system is responsible for

preserving the similarities of two sample data points in the

training data set in our propose system. Given a database 𝑋,

two data samples 𝑋𝑖 and 𝑋𝑗 contained in the training set of

data. Extracting the similarity between the two data samples

as 𝑄𝑖𝑗 from the similar geometric feature points of image data

is done. Hashing methods require geometric coordinate

properties for similarity preserving. Next, the data points that

are similar are ensured to have similar hash codes with small

hamming distance.

The similarities among the sample data points detected using

SIFT is then preserved as a similarity preserving term, and

then we further seek a code that maps similar data points to

similar binary hash codes known as similarity preserving. The

Hamming distance is then minimised between similar data

points and the corresponding similar binary hash codes. The

similarity preserving term, and Hamming distance

minimisation between similar data points and it corresponding

similar binary hash code are represented in equations (6) and

(7) respectively. We sum the similarity preserving term as the

summation of 𝑥𝑖 samples of data points from 1 to 𝑁 plus the

summation of 𝑥𝑗 corresponding similar binary hash code from

1 to 𝑁 as in equation (6). Hamming distance is minimised the

by taking the absolute values of the of the similarity term as in

equation (7) (Junfeng et al., 2011).

Hamming distance = taking the absolute (abs) values of

Similarity term.

𝑄 𝑦 = 𝑥𝑖=1,…,𝑁 𝑥𝑖=1,…,𝑁 = 𝑥𝑖𝑗 =1,…,𝑁 (6)

𝑄𝐻 𝑦 = 𝑄𝑖𝑗 ||𝑌𝑖 − 𝑌𝑗 ||2
𝑗=1,…,𝑁𝑖=1,…,𝑁 (7)

where𝑄𝑖𝑗 is the sample data that has similarity, 𝑄(𝑦) is the

similarity preserving term and 𝑄𝐻 𝑦 is the absolute value of

the similarity term 𝑄 𝑦 .

For efficient search accuracy with respect to similarity search,

similar data points are mapped to similar binary hash codes

for similarity preserving. This means that similar data points

must have similar binary hash codes with small Hamming

distance by minimisation. The Hamming distance to

minimised with respect to:𝑦𝑖 ∈ 0, 1 𝑘

 𝑦𝑖 = 0 𝑖 (8)
1

𝑛
 𝑦𝑖𝑦𝑖𝑇 = 𝐼𝑖 (9)

Where the constraints (8) require each bit to fire 50% of the

time, and the constraint (9) requires the bits to be

uncorrelated. And, y is the set of all 𝑌𝑖 . Then from equation

(7), samples with high similarity or with bigger similarity 𝑄𝑖𝑗

will have similar binary hash codes with smaller Hamming

distance||𝑌𝑖 − 𝑌𝑗 ||2. 𝑌𝑖and𝑌𝑗 are the similar hash codes.

The algorithm for similarity preserving is given in figure 2.

Algorithm 1: Similarity Preserving

1. Start

2. Input: n training sample dataset 𝑋 = {𝑥1, 𝑥2 , 𝑥3 , … , 𝑥𝑛} in the

database; 𝑤𝑖𝑗 the similarity between 𝑥𝑖 𝑎𝑛𝑑 𝑥𝑗 //𝑢𝑝 𝑎𝑛𝑑 𝑢𝑞 are the

hash codes for 𝑥𝑖 and 𝑥𝑗 //; c, Sim

3. Sum = 0, Ham = 0

4. 𝑓𝑜𝑟 𝑖 = 1 𝑡𝑜 𝑐//c the number of iteration for 𝑖//
5. 𝑓𝑜𝑟 𝑗 = 1 𝑡𝑜 𝑉//𝑉 is the number of iteration for 𝑗//
6. Get 𝑊 𝑖, 𝑗
7. Sum = Sum + 𝑖
8. 𝑗 = 𝑗 + 1
9. 𝑖𝑓 𝑖 ≤ 𝑐 goto step 6

10. end if

11. end for

12. Sim = Sum

13. break;

14. //minimising Hamming distance//

15. 𝑓𝑜𝑟 𝑖 = 1 𝑡𝑜 𝑐

16. 𝑓𝑜𝑟 𝑗 = 1 𝑡𝑜 𝑐

17. Get 𝑦 𝑖 , 𝑦(𝑗); //𝑢𝑝 𝑎𝑛𝑑 𝑢𝑞 are similar binary hash

codes//

18. Ham = Ham + (𝑦 𝑖 − 𝑦(𝑗))**2

19. 𝑗 = 𝑗 + 1

20. 𝑖𝑓 𝑗 ≤ 𝑐 goto step 17

21. end if

22. 𝑖 = 𝑖 + 1

23. 𝑖𝑓 𝑖 ≤ 𝑐 goto step 17

24. end if

25. end for

26. end for

27. SimM = Ham

28. Print Sum, SimM//output//

29. Stop

Figure 2. Algorithm for Similarity Preserving

3.1.2 Balance Partitioning for independence.

To have uniform distribution of data points in hash bucket, we

make each hash function independent of one another. That is

the functionality of one hash function does not depend on the

other one to function. This is because each hash function is

depended on itself to distribute data points in an evenly

manner to different hash codes. Therefore, each hash function

is given the opportunity of becoming 0 or 1 since binary digits

are represented by zeros (0’s) and ones (1’s). This means that

for hash functions to be independent, each hash function

should have the chance of being one or zero and the different

binary hash codes are independent of each other as in equation

(4) above.

Independence of hash functions is demonstrated in a scenario

as follows: As a typical scenario, the probability that an event

say 𝐵𝑖 be a hash function that is one (1). 𝐵𝑖 is the event that

𝑕𝑖 𝑥 = 1. Then define two events 𝐵𝑖and 𝐵𝑗 , next to be

independent if and only if the probability of 𝐵𝑖 = 1 and the

probability of 𝐵𝑗 = 1is equivalent to the probability of 𝐵𝑖 = 1

multiply by the probability of 𝐵𝑗 = 1 as in equation (10).

Here, similar bits are mapped into same bucket with high

probability of having equal chance of becoming one (1) by

defining independence of each bit. Any of equation (4) and (5)

is used to balance the partitioning of data points for each bit.

International Journal of Research and Scientific Innovation (IJRSI) | Volume VI, Issue VI, June 2019 | ISSN 2321–2705

www.rsisinternational.org Page 219

𝑝𝑟[𝑕𝑖 𝑥𝑖 = 1] =
1

2
, 𝑥 ∈ 𝑋, 1 ≤ 𝑖 ≤ 𝑡 (4)

𝑁𝑖 = 𝑁𝑖
2𝑀

𝑖=1 (11)

Where 𝑁𝑖 is the number of training samples in the 𝑖𝑡𝑕 bucket

and 𝑀 is the number of buckets. To achieve independence

between two bits given that 𝑥 ∈ 𝑋 and 1 ≤ 𝑖 < 𝑗 ≤ 𝑡 where 𝑖
and 𝑗 are the 𝑖𝑡𝑕 and 𝑗𝑡𝑕 data points, and 𝑡 is the threshold,

hash functions are design to be independent and the data

points are distributed equally to each hash bucket.

𝑝𝑟 𝑕𝑖 𝑥 = 1, 𝑕𝑗 𝑥 = 1 = 𝑝𝑟 𝑕𝑖 𝑥 = 1 . 𝑝𝑟 𝑕𝑗 𝑥 = 1

=
1

2
 .

1

2
 =

1

4
 (5)

𝑃𝑟 𝐵𝑖 ∩ 𝐵𝑗 = 𝑃𝑟 𝐵𝑖 . Pr⁡[𝐵𝑗] (10)

𝑝𝑟[𝑕𝑖 𝑥𝑖 = 1] =
1

2
, 𝑥 ∈ 𝑋, 1 ≤ 𝑖 ≤ 𝑡

The intersection is the equal chance of the code bit being a

binary hash code 1.

The next is to incorporate the similarity preserving term with

the balance partitioning components or terms together to

simultaneously improve the search accuracy and search time.

We insert the data points into each bucket a

𝑁𝑖 =
𝑁

2𝑀
 . (11)

Balance partitioning for distributing data points to different

binary codes by independent hash functions is in figure 3.

Algorithm 2: Balanced Partitioning

1. Start
2. Let V = 2**M

3. Input: N; M//N is the number of training sample in the 𝑖𝑡𝑕
bucket//

4. //M is the number of buckets//

5. 𝑓𝑜𝑟 𝑖 = 1 𝑡𝑜 𝑉//𝑉 is the memory location for 2**𝑀//

6. get 𝑁(𝑖)

7. BP = N(𝑖) ∗∗ 2

8. 𝑖 = 𝑖 + 1
9. 𝑖𝑓 𝑖 ≤ 𝑉 goto step 6
10. end if

11. end for
12. Print BP//output balance partitioning//

13. Stop

Figure 3. Algorithm for Balance Partitioning

3.1.3 Joint Optimisation.

In this section, we integrate the similarity preserving term

𝑄(𝑌) for search accuracy and the minimum information

criterion for the search time to form a single entity. To enable

a high search accuracy with fast search time, the joint

optimisation component of the proposed system is formulated

and is responsible for the simultaneous optimisation of the

search accuracy and search time. A parametrisation of a linear

function is performed for easy optimisation, and a relaxation

is perform.

The joint optimisation is responsible for the computation of

the hash bit that will be used for query and the identification

of the bucket with the same hash bits with the query, and to

also oversee the loading of data samples from the selected

buckets into the memory. Here, the hash function

independent is made to be independent to distribute data

points evenly or equally to different binary hash codes. To

minimise the time complexity, each bucket will contain equal

number of samples to have a balanced buckets. This is done to

minimise the search time. To have equal number of samples in

each bucket to balance the buckets, 𝑁 =
𝑁

2𝑀
 (Junfeng et al.,

2011) equation (11)

Here, the search accuracy is improved by minimising the

Hamming distance between similar data points.

𝑄 𝑦 = 𝑠𝑢𝑚 𝑜𝑓 𝑠𝑎𝑚𝑝𝑙𝑒𝑠 𝑜𝑓 𝑥 𝑓𝑟𝑜𝑚 𝑖 𝑡𝑜 𝑁 +

𝑠𝑢𝑚 𝑜𝑓 𝑠𝑎𝑚𝑝𝑙𝑒𝑠 𝑜𝑓 𝑥 𝑓𝑟𝑜𝑚 𝑗 𝑡𝑜 𝑁. Mathematically, this can

be expressed as:

𝑄 𝑦 𝑥𝑖=1,…𝑁 + 𝑥𝑗=1,…𝑁 (12)

The similarity preserving term and the balance partitioning are

incorporated together for simultaneous improvement in search

accuracy and search time, (Junfeng et al., 2011).

3.1.3. Similarity preserving term 𝑄 𝑦

To improve the accuracy of searches in a database, we use the

similarity preserving term which contains the similarity

features among the data points, 𝑄 𝑦 , with a minimised

Hamming distance in equation (7), Junfeng et al., 2011.

The joint optimisation algorithm is presented in figure 4.

Algorithm 3: Joint Optimisation

1. Start

2. Input: the training dataset𝑋𝑖 , 𝑖 = 1,2,3,… , 𝑁, similarity matrix 𝑊

and 𝑊 = 𝑊𝑖𝑗 ; the number of required bits 𝐾 to map the full

dataset as hash codes; BP; N; M;
3. Initialise: Sum = 0; Sim = 0; SimM = 0; BP = 0; V = 2**M; yi =

0; JointO = 0//jointO is the memory location for joint optimisation

4. 𝑓𝑜𝑟 𝑖 = 1 𝑡𝑜 𝑐

5. 𝑓𝑜𝑟 𝑗 = 1 𝑡𝑜 𝑐

6. Get y(𝑖), y(𝑗), x(𝑖, 𝑗)

7. Sum = Sum + (𝑦 𝑖 − 𝑦(𝑗))**2
8. j = j + 1

9. 𝑖𝑓 𝑗 ≤ 𝑐 goto step 6
10. end if

11. 𝑖 = 𝑖 + 1

12. 𝑖𝑓 𝑖 ≤ 𝑐 goto step 17
13. end if

14. end for
15. end for

16. Sim = Sum

17. break;

18. 𝑓𝑜𝑟 𝑖 = 1 𝑡𝑜 𝑉

19. get 𝑁(𝑖)

20. BP = N(𝑖) ∗∗ 2

21. 𝑖 = 𝑖 + 1
22. 𝑖𝑓 𝑖 ≤ 𝑉 goto step 40
23. end if

24. end for

25. Print Sim, BP

International Journal of Research and Scientific Innovation (IJRSI) | Volume VI, Issue VI, June 2019 | ISSN 2321–2705

www.rsisinternational.org Page 220

26. //Incorporating similarity preserving term and balanced

partitioning//

27. JointO = Sim + BP

28. //computing 𝑢𝑖 //

29. 𝑇 𝑎, 𝑏 = 0, swap = 0

30. Get x
31. Get b

32. 𝑓𝑜𝑟 𝑖 = 1 𝑡𝑜 𝑎

33. 𝑓𝑜𝑟 𝑗 = 𝑖 + 1 𝑡𝑜 𝑏

34. Get 𝑇 𝑖, 𝑗
35. j = j + 1

36. 𝑖𝑓 𝑗 ≤ 𝑏 goto step 55
37. i = i + 1

38. 𝑖𝑓 𝑖 ≤ 𝑎 goto step 55
39. end if

40. end if
41. end for

42. end for

43. 𝑓𝑜𝑟 𝑖 = 1 𝑡𝑜 𝑎

44. 𝑓𝑜𝑟 𝑖 = 1 𝑡𝑜 𝑏

45. Swap = 𝑇 𝑖, 𝑗
46. 𝑇 𝑖, 𝑗 = 𝑇(𝑗, 𝑖)

47. 𝑇 𝑗, 𝑖 = 𝑠𝑤𝑎𝑝

48. 𝑕(𝑖) = 𝑠𝑖𝑔𝑛(𝑇 𝑗, 𝑖 ∗ 𝑥 𝑖 − 𝑏//T is the projection matrix of

𝑑 × 𝑀 and 𝑏 is a vector//

49. 𝑗 = 𝑗 + 1

50. 𝑖𝑓 𝑗 ≤ 𝑏 goto step 45

51. 𝑖 = 𝑖 + 1

52. 𝑖𝑓 𝑖 ≤ 𝑎 goto step 44
53. end if

54. end if

55. end for
56. end for

57. for i = 1

58. Print h(i)

59. 𝑖 = 𝑖 + 1

60. 𝑖𝑓 𝑖 ≤ 𝑎 goto step 78
61. end if

62. end for

63. Stop

Figure 4. Joint Optimised Algorithm for Search Accuracy and Time

IV. EXPERIMENTAL SETUP

This section provides and avenue for evaluating the proposed

technique and make a comparison to the state-of-the-art-

techniques.

4.1 Performance metrics

The Geo-SPBH will be compared with state-of-the-art-

techniques to obtain the mean average precision based on

parameter analysis, the precision-recall rate, and the search

accuracy and search time trade-off. We implement our method

to measure the performance of retrieval result on the mean

average precision (MAP) using the SIFT 1B dataset. The

MAP measures the average of precision scores for the queries.

It is the area under the precision-recall curve for a set of

queries. A large value of MAP will indicate a better

performance.

4.2 Evaluation Techniques

The algorithms used in the evaluation of the proposed system

are the DSH, KLSH, LSH, SIKH.

1. Density Sensitive Hashing: Density sensitive hashing

is a semi-supervised based hashing techniques that

combined the characteristics of data-independent and

data-dependent hashing techniques. The projections

are generated based on selective principles. This

technique avoids the complete random selection and

generates the projections based on selective

principles (Jin et al., 2014). thismethod is an

extension of LSH.

2. Locality Sensitive Hashing: Locality sensitive

hashing is a hashing based technique that does not

depend on the distribution of data for projection

generation. LSH generates its projections randomly.

The vectors used for projection generation are

randomly sample from a p-stable distribution. It is an

unsupervised technique that apply to change

detection domain (Datar, et al., 2004)

3. Kernerlised Locality Sensitive Hashing: KLSH

generalises the LSH to the kernel space (Kulis &

Grauman, 2009).

4. Shift-Invariant Kernel Hashing (Raginsky &

Lazebnik, 2009): The SIKH is based on the random

feature hashing for approximating the shift-invariant

kernels.

5. Geo-SPEBH: This is the proposed method to be

compared with the above mentioned algorithms.

4.3 Programming tools used

All the experiments were conducted and run on a 3.40 GHz

CPU with four cores and 16 G RAM, in a Java software tool

built on CloudSim for experimentation, simulation and

implementation. The CloudSim is configured with 1 data

centre on 100 cloudlets with the capacity of accepting input a

output size of 300 each and length of 5000.

4.4 Results

To generate discriminative binary hash codes that needs only

small number bits to code a huge amount of data in a database

to yield high search accuracy and an improved search time

with less memory consumption.

Table 1. SIFT 1Billion Data Set use in implementing the existing system

Dataset Dimension
No. of base

vectors

No. of

query

vectors

No. of learn
vectors

SIFT 1B 128 1,000,000,000 10,000 100,000,000

4.4.1 Implemented Results

SIFT 1B dataset from simulation results carried out on the

existing algorithm implemented on the proposed system and

the results were compared. The proposed Geo-SPEBH

algorithm is implemented and compared the result with state-

of-the-art-techniques. The based algorithm (DSH) and other

existing state-of-the-art techniques are run with the new

components and the results are obtained and compared. The

results obtained shows that the proposed system outperform

International Journal of Research and Scientific Innovation (IJRSI) | Volume VI, Issue VI, June 2019 | ISSN 2321–2705

www.rsisinternational.org Page 221

the existing techniques based on the mean average precision

results as shown in table 2.

Table 2. Simulation Results for the Proposed and Existing Methods

 SIFT 1B Mean Average Precision (%)

 Code length (bits)

METHODS 8 16 32 48 64 80 96

LSH 0.0459 0.0687 0.0895 0.1005 0.1515 0.1534 0.1719

DSH 0.0600 0.1250 0.3434 0.1300 0.1507 0.1616 0.2501

SIKH 0.0503 0.0509 0.0641 0.0687 0.0723 0.0898 0.1235

KLSH 0.0547 0.0590 0.0900 0.1109 0.1194 0.1387 0.1466

GSPEBH 0.0688 0.1299 0.3906 0.1414 0.1677 0.1916 0.2605

Figure 5. The Mean Average Precision of all the Algorithms on SIFT 1B
Dataset.

4.2 Discussion

The SIFT BM datasetis a dataset that consist of one million

SIFT features represented by 128 dimension vectors. The

number of base vectors is 1,000,000,000 while the query

vectors 10, 000, 100,000,000 vectors are used for learning.

This dataset is run with the old algorithm (DSH) with varied

number of bits, 8, 16, 34, 48, 64, 80, 96 to obtain the mean

average precision (MAP) for each query. We select 1K data

points as the queries and the remaining are used to form the

gallery database. The point retrieved is seen as the true

neighbour if it lies in the top 2 percentile points closest to the

query. It is measured by the Euclidean distance in the original

space. The data points in the database for every query are

ranked according to their Hamming distances to the query.

V. CONCLUSION

It can be seen that the data-independent based methods

recorded a very low performance when the code length is

short but achieved high performance when the code length is

long. This methods are LSH, SIKH, and KLSH. From table 2

above, it can be seen that our proposed method outperform the

compared methods as it recorded high MAP when the code

length is short and still maintain performance when the code

length increases, and the memory cost is low compared to the

base-line methods on the SIFT 1B dataset for all code lengths.

The low memory cost recoded by our proposed algorithm

indicate that it can handle large amount of data (huge

database). Table 2 gives the Mean Average Precision results

for the SIFT dataset for all the compared methods. Given 0.3

Mean Average Precision obtain from the results above, our

Geo-SPEBH requires 64 bits to encode each image in the

sample dataset. On the other hand, the compared methods

requires more than 64 bits up to 80 bits to encode each image

in the database.

Further research should be directed towards finding a solution

to balancing the trade-off between precision-recall, and the

measure the performance based on search time. Furthermore,

the data collected from different sources in a raw form such as

student records, health records, mathematical and statistical

analysis cannot be effectively analysed. An advanced

technique is required so that data can be extracted from

different sources to structured them in a format that can be

used for analysis.

REFERENCES

[1]. Thilkanathan, Danan, S. C., Surya, N., Rafael, C., & Leila, A.

(2014). A platform for monitoring and sharing of generic health

data in the cloud. Future generation computer system, 35, 102-

113. Retrieved April 9, 2017

[2]. Huang, Z., Heng, T. S., & Shao, J. (2010). Bounded Coordinate

System Indexing for Real-time. ACM Transactions on Information
Systems, 10(10), 1-32.

[3]. Gartner M, Rauber, A., & Berger, H. (2013). Briging structured

and unstructured data via hybrid semantic search and interactive
ontology-enhanced query formulation. Knowledge information

system, 1-32.

[4]. Chen, J., Yuegue, C., Lia, E., Cuiping, I. L., & Jiaheng, U. L.
(2013). Big Data Challenges: A data Management Perspective.

Higher education press and springer verlag Berlin Heidelberg,

7(2), 157-164.
[5]. Doan, A, N. J., Baid, A., Chai, X., Chen, F., Chen, T., . . . Vuong,

B. Q. (2009). The case for a structured approach to managing

unstructured data. In Proceeding of the 4th Biennial Conference
on Innovative Data Systems Rsearch.

[6]. Agrawal, D., Bernstein, P., Bertino, E., Davidson, S., & Dayal, U.

(2012). Challenges and Opportunities with Big Data. A white
paper prepared for the Computing Community Consortium, 1-16.

[7]. Lv, Q., Josephson, W., Wang, Z., Charikar, M., & Li, K. (2007).

Multi-probeLSH: Efficient indexing for high-dimensional
similarity search. Proceedings of international conference on Very

Large Data Bases, 950-961.

[8]. Dong, W., Wang, Z., Josephson, W., Charikar, M., & Li, K.
(2008). Modelling LSH for performance tuning. In Proceedings of

the ACM conference on information and knowledge management,

669-678.
[9]. Gong, Y., & Lazebnik, S. (2011, June). Iterative Quantisation: A

procrustean approach to learning binary codes. Proceedings of

IEEE conference on computer visionand pattern recognition, 817-
824.

[10]. Liu, W., Wang, J., Kumar, S., & Chang, S.-F. (2011). Hashing

with graphs. In International Conference on Machine Learning.

0

0.1

0.2

0.3

0.4

0.5

8 16 32 48 64 80 96

M
ea

n
 A

ve
ra

ge
 P

re
ci

si
o

n

Code Length

Mean Average Precision of
Compared Algorithms on SIFT

1Billion

LSH

SIKH

DSH

KLSH

GSPEBH

International Journal of Research and Scientific Innovation (IJRSI) | Volume VI, Issue VI, June 2019 | ISSN 2321–2705

www.rsisinternational.org Page 222

[11]. Abubakar, U. O., Boukari, S., Abdulsalam, Y. G., Iliya, M. A.,

(2018). Geo-Cyclical Structure-Based Hashing, World Journal of

Engineering Research and Technology, 203-217
[12]. Boukari, S., Othman, U. A., Abdulsalam, Y. G., Iliya, M. A.,

(2019). Performance Evaluation of GeometricSimilarity PreGlobal

Scientific Journals, 7(4), 642-657.
[13]. Norouzi, M., & Blei, D. M. (2011). Minimal loss hashing for

compact binary codes. Proceedings of international conference on

machine learning., 353-360.
[14]. Norouzi, M., & Fleet, D. J. (2013, June). Cartesian K-means.

Proccedings of international conference on computer vision and

pattern recognition, 3017-3024.
[15]. Gong, Y., Kumar, S., Rowley, H. A., & Lazebnik, S. (2013, June).

Learning binary codes for high-dimensional data using bilinear

projection. Proceedings of IEEE on international conference on
computer vision and pattern recognition, 484-491.

[16]. Gong, Y., Kumar, S., Vernma, V., & Laxebnik, S. (2012). Angular

Quantisation Based Binary Codes for Fast Similarity Search.
Proceedings of NIPS , 1205-1213.

[17]. Guosheng, L., Chunhua, S., & Anton, V. d. (2015). Supervised

hashing using graph cuts and boosted decision trees. IEEE

transactions on pattern analysis and machine intelligence, 37(11).

[18]. Georgia, S., & George, L. (2013). A survey on mathematical
models, simulation approaches and testbeds used for research in

cloud computing. Simulation Modelling Practice and Theory, 1-

12.
[19]. Pericherla, S. S. (2016, April). A Comparative Analysis of Cloud

Simulators. International Journal of Modern Education and

Computer Science, 4, 64-71.

[20]. Yueming, L., Wing, W. Y., Ziqian, Z., Daneil, S. Y., & Patrick, P.

K. (2015, August). Asymetric Cyclcial Hashing for Large-Scale-

Image Retrieval. IEEE Transaction on Multimedia, 17(8), 1225-
1235.

[21]. Ye, R., & Xuelong, L. (2016, March). Compact Structure Hashing

Via Sparse and Similarity Embedding. IEEE Transactions on
Cybernetics, 46(3), 718-728[4] Aguilera M, K., Golab, W., &

Shah, M. A. (2008). A practical scalable distributed b-tree.

Proceedings of the VLDB Endowment, 1(1), 598–609.
[22]. Heo, J.-P., Youngwoon, L., Junfeng, H., Shih-Fu, C., & Sung-Eui,

Y. (2015). Spherical Hashing: Binary Code Embedding with

Hypersphere. IEEE Transaction on Pattern Analysis and Machine
Inteligence, 1-14.

[23]. Jin Z, L. C., Lin, Y., & Cai, D. (2014, august). Density Sensitive

Hashing. IEEE transactions on Cybernetics, 44(8), 1362-1371.
[24]. Umarani Jayaraman, S. P. (2013). Use of geometric features of

principal components for indexing a biometric database.

Mathematical and computer modelling, 58, 147-164.
[25]. Junfeng, H., Regunathan, R., Shih-Fu, h., & Claus, B. (2011).

Compact Hashing with Joint Optimisation of Search Accuracy an

Time. CVPR.

[26]. Datar, M., Immorlica, N., Indyk, P., & Mirrokni, P. (2004).

Locality sensitive hashing scheme based on p-stable distributions.
In Proceedings of the Symposium on Computational Geometry,

253–262.

[27]. Kulis, B., Jain, P., & Grauman, K. (2009). Fast similarity search
for learned metrics. TPAMI, 31(12), 2143–2157.

[28]. Raginsky, M., & Lazebnik, S. (2009). Locality-sensitive Binary

Codes from Shift Invariant Kernels. Proceedings of Advance
Neural Information Processing System, 1509-1517.

