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Abstract: - Exploratory factor analysis is widely applied by 
psychometricians and other behavioural science researchers in 
complex studies involving numerous variables and factors. A 
variable might be related to more than one factor and therefore a 
psychometrician should consider this possibility when deciding 
about how many factors will be considered when analysing the 
data. The rotation of factors is used to get more interpretable 
and simplified solutions from the factor extraction results by 
maximising high item loadings and minimising low item loadings. 
Rotation helps to deal with data sets where there are large 
numbers of observed variables that are thought to reflect a 
smaller number of underlying/latent variables. It is one of the 
most commonly used inter-dependency techniques and is used 
when the relevant set of variables shows a systematic inter-
dependence and the objective is to find out the latent factors that 
create a commonality. However, practitioners and researchers 
often make questionable decisions when conducting these 
analyses, especially in the choice of the rotation method from 
among the two; orthogonal and oblique. This paper therefore 
sought to examine exploratory factor analysis and its relevant 
protocol, discusses the two factor rotation methods, the 
operational differences and the parsimoneity of outputs, 
eigenvectors which are usually at the center of rotation as well as 
a guide for practitioners in deciding between orthogonal and 
oblique rotation. Finally the paper gives a parting short in the 
conclusion section. It is hoped that the paper will present useful 
insights for practitioners’ use. 

I. INTRODUCTION 

actor analysis is a psychometric technique that is used to 
reduce a large number of variables into fewer numbers of 

factors.  Technically speaking, the technique extracts 
maximum common variance from all variables and puts them 
into a common score. In simple terms, factor analysis is a way 
to take a mass of data and shrinking it to a smaller data set 
that is more manageable and more understandable. In its 
internal functioning, it seeks to find hidden patterns, show 
how those patterns overlap and show what characteristics are 
seen in multiple patterns. 

This paper focused on Exploratory Factor Analysis (EFA) 
which is a type of factor analysis that is used to find the 
underlying structure of a large set of variables. It reduces data 
to a much smaller set of summary variables. 

According to Yong and Sean (2013) EFA is an analysis of 
exploratory type that is used to identify the complex 
interrelationships among the variables, and group these 
variables as part of unified concepts. This method helps the 

psychometrician to draw the main dimensions of the area of 
interest to derive a theory or a model from the reasonably 
large set of variables (it is not based on any prior theory).The 
groups formed from interrelated variables are called factors.  

Exploratory Factor Analysis is performed without any prior 
idea of, which factors indeed subsist and which variables 
loads to each group formed. In essence, the psychometrician 
uses conventional procedure and rules to arrange and load the 
variables on factors and to fix the number of factors. 
Therefore in its operational mechanics, the EFA explores the 
data and provides the psychometrician with information about 
how many factors are needed to best represent it. The 
correlation between the variables and factors known as factor 
loading gives the nature of a particular factor. 

In general, an Exploratory Factor Analysis prepares the 
variables to be used for cleaner structural equation modeling. 
An EFA should always be conducted for new datasets. The 
functional advantage of an EFA over a CFA (confirmatory 
Factor Analysis) is that no a priori theory about which items 
belong to which constructs is applied. This makes it possible 
for EFA to spot problematic variables much more easily than 
the CFA.  

The only catch is the specificity of the nature of data on which 
EFA can be performed, that is all data must be non-nominal 
which theoretically belong to reflective latent factors. The 
exclusive implication is that formative measures, nominal or 
categorical data such as gender, marital status etc should not 
be included in the EFA designs.   Again, objective (rather than 
perceptual) variables should be excluded because they rarely 
belong to reflective latent factors. 

II. EXPLORATORY FACTOR ANALYSIS (EFA) 
PROTOCOL 

An Exploratory Factor Analysis is executed through a series 
of steps in building clear decision pathway. Of course the 
logical start point is the definition of the psychometric 
problem. The figure below shows the systematic steps 
followed in EFA by psychometricians.  
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Figure1: Exploratory Factor Analysis (EFA) protocol

III. FACTOR ROTATIONS 

During factor analysis, different algorithms or methods are 
used to achieve the same broad goal- simplification of the 
factor structure. This involves carrying out rotations.  Rotation 
methods fall into two broad categories: orthogonal and 
oblique (referring to the angle maintained between the X and 
Y axes).  

Oblique methods allow the factors to correlate (that is, they 
allow the X and Y axes to assume a different angle than 90
with smaller angles being manifested more)
below illustrates oblique rotation and the angles of rotation
(Rummel, 1970). 

Figure 2: An illustration of oblique rotation
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Clearly, the angle between the two factors is now smaller than 
90 degrees, meaning the factors are now correlated. In this 
example, an oblique rotation accommodates the data better 
than an orthogonal rotation. Consequently, the two axes of the 
two factors are probably closer together than an orthogonal 
rotation can make them.  

According to Gorsuch (1983), there are over 15 different 
oblique rotation methods which all assume that the factors are 
correlated. Of the 15 oblique methods, the most common ones 
are direct oblimin and promax. 

In the case of orthogonal rotations produce factors that are 
uncorrelated (that is, maintain a 90o

diagram below illustrates orthogonal rotation and the angles 
of rotation.  

Figure 3: An illustration of orthogonal

Here is a display of the oblique rotation of the axes for our 
new example, in which the factors are correlated with each 
other: hence the strong recommendation for adoption of 
oblique rotation in behavioral sciences.
methods assume that the factors in the analysis are 
uncorrelated. Gorsuch (1983) listed four different orthogonal 
methods:  equamax, orthomax, quart
orthogonal rotation.   

Many psychometricians and researchers have (as a matter of 
tradition) been guided to orthogonal rotation because (the 
argument went) uncorrelated factors are more easily 
interpretable.  

IV. OPERATIONAL DIFFERENCES AN
PARSIMONEITY OF OUTPUTS

Assuming there are 5 factors for 100 
variables)which are extracted and orthogonally rotated, only 
500 factor pattern/structure coefficients are estimated (the5 x 
5 factor correlation matrix is not estim
constrained to have l's on the diagonal and 
else).If the same Exploratory Factor Analysis (EFA) 
are rotated obliquely, we shall have
factor pattern coefficients, plus 500 factor structure 
coefficients, plus 10 factor correlation coefficients (the 10 
non-redundant off-diagonal entries in the 5 x 5 factor 
correlation matrix) are estimated. We can argue
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hence the strong recommendation for adoption of 
oblique rotation in behavioral sciences.Orthogonal rotation 
methods assume that the factors in the analysis are 
uncorrelated. Gorsuch (1983) listed four different orthogonal 
methods:  equamax, orthomax, quartimax, and varimax 

Many psychometricians and researchers have (as a matter of 
tradition) been guided to orthogonal rotation because (the 
argument went) uncorrelated factors are more easily 

IV. OPERATIONAL DIFFERENCES AND THE 
PARSIMONEITY OF OUTPUTS 

5 factors for 100 factored entities (e.g., 
are extracted and orthogonally rotated, only 

500 factor pattern/structure coefficients are estimated (the5 x 
5 factor correlation matrix is not estimated, since it is 
constrained to have l's on the diagonal and 0's everywhere 

Exploratory Factor Analysis (EFA)  factors 
we shall have 1,010 coefficients(500 

factor pattern coefficients, plus 500 factor structure 
fficients, plus 10 factor correlation coefficients (the 10 

diagonal entries in the 5 x 5 factor 
We can argue, however, that 
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only 510 coefficients are estimated in this case, since with 
either the 10 unique factor correlation coefficients, and either 
the 500pattern or the 500 structure coefficients, the remaining 
500pattern or structure coefficients are fully determined. So, 
in essence, an oblique factor solution inherently tends to be 
less parsimonious. 

According to Osborne (2015) the fact that more parameters 
are estimated in an oblique rotation means that oblique 
solutions almost always better fit sample data than do 
orthogonal solutions. However, some of this fit involves 
"over-fitting" sampling error variance. This means that 
orthogonal solutions, though they may tend to somewhat fit 
sample data less well, are generally more replicable in future 
samples, since orthogonal solutions capitalize on less 
sampling error. Usually, at least in Exploratory Factor 
Analysis(EFA), somewhat poorer fit is deemed an acceptable 
tradeoff for better solution replicability (i.e., factor 
invariance). As the degree of correlation between the factors 
decreases, both orthogonal and oblique solutions will tend to 
provide increasingly similar results. Given that oblique 
solutions are less parsimonious and therefore less replicable, 
an oblique rotation would therefore only be employed when 
the benefits of simpler, more interpretable structure outweigh 
the costs of less replicability (i.e., when the orthogonal factors 
are not readily interpretable, and the oblique factors are fairly 
highly correlated but more interpretable) 

V. EIGENVECTORS AT THE CENTER OF ROTATION 

Eigenvectors are a special set of vectors associated with a 
linear system of equations (i.e., a matrix equation) that are 
sometimes also known as characteristic vectors, proper 
vectors, or latent vectors. . In factor analysis, eigenvalues are 
used to condense the variance in a correlation matrix. "The 
factor with the largest eigenvalue has the most variance and so 
on, down to factors with small or negative eigenvalues that are 
usually omitted from solutions" (Tabachnick and Fidell, 
2007). From the analyst's perspective, only variables with 
eigenvalues of 1.00 or higher are traditionally considered 
worth analyzing. However, the other three approaches 
explained below can provide overriding reasons for selecting 
other numbers of factors (Gorsuch, 1983). 

In matrix algebra, under certain conditions, matrices can be 
diagonalized. Matrices are often diagonalized in multivariate 
analyses. In that process, eigenvalues are used to consolidate 
the variance. The determination of the eigenvectors and 
eigenvalues of a system is extremely important in 
psychometrics, physics and engineering, where it is equivalent 
to matrix diagonalization and arises in such common 
applications as stability analysis, the physics of rotating 
bodies, and small oscillations of vibrating systems, to name 
only a few. Each eigenvector is paired with a corresponding 
so-called eigenvalue. Mathematically, two different kinds of 
eigenvectors need to be distinguished: left eigenvectors and 
right eigenvectors. However, for many problems in 
psychometrics, it is sufficient to consider only right 

eigenvectors. The term ‘eigenvector’ used without 
qualification in such applications can therefore be understood 
to refer to a right eigenvector.  

The decomposition of a square matrix A into eigenvalues and 
eigenvectors is known in this work as Eigen decomposition, 
and the fact that this decomposition is always possible as long 
as the matrix consisting of the eigenvectors of  A is square is 
known as the Eigen decomposition theorem.  

Define a right eigenvector as a column vector satisfying  

 

where is a matrix, so 

 

which means the right eigenvalues must have zero 
determinant, i.e., 

 

Similarly, define a left eigenvector as a row vector
satisfying  

 

Taking the transpose of each side gives  

 

which can be rewritten as  

 

Rearrange again to obtain  

 

which means  

 

Rewriting gives  

 

 

where the last step follows from the identity  

 

Since R=A’A = VD2V’, then RV = D2V’. So (simplifying the 
notation) an eigenvector v of a matrix R is any vector that 
satisfies this equation:  Rv = λv. R is a square (normally 
symmetric) matrix, v is the eigenvector, λ is the eigenvalue 
associated with that eigenvector. The eigenvector is a vector 
which, if pre-multiplied by a matrix, gets you the vector back 
again (a property called idempotency). 

Suppose X is a case-by-variable matrix (e.g., the columns of 
X give responses for each case on a series of attitude 
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questions such as 'Should man eat where he worketh?' or 
'Should citizens be allowed to own guns?') and R is the matrix 
of correlations among the variables of X. Then the 
eigenvectors of R (multiplied by their eigenvalues) are known 
as the factor loadings and are literally the correlations of the 
each variable in X with an underlying factor or principal 
component.  

VI. DECIDING BETWEEN ORTHOGONAL AND 
OBLIQUE ROTATION 

But how should I choose which one to use? The decision to 
rotate orthogonally or obliquely is often difficult for 
psychometricians and researchers and is largely based on the 
goal of the analysis. If the goal of the analysis is to generate 
results that best fit the data, then oblique rotation seems to be 
the logical choice.  

Conversely, if the replicability of the factor analytic results is 
the primary focus of the analysis, then an orthogonal rotation 
might be preferable since results from orthogonal rotation 
tend to be more parsimonious. 

Tabachnick and Fiddell  (2007)  argue  that  “Perhaps  the  
best  way  to  decide  between orthogonal  and  oblique  
rotation  is  to  request  oblique  rotation  [e.g.,  direct  oblimin  
or  promax  from SPSS]  with  the  desired  number  of  
factors  ( Brown,  2009)  and  look  at  the  correlations  
among factors...if factor correlations are not driven by the 
data, the solution remains nearly orthogonal. Look at  the  
factor  correlation  matrix  for  correlations  around  .32  and  
above.  If correlations exceed 0.32, then there is 10% (or 
more) overlap in variance among factors, enough variance to 
warrant oblique rotation unless there are compelling reasons 
for orthogonal rotation. 

One  way  we  know  if  we  have  selected  an adequate  
rotation  method  is  if  the  results  achieve simple  structure . 
Bryant and Yarnold (1995) define simple structure as:a 
condition in which variables load at near 1 (in absolute value) 
or at near 0 on an eigenvector (factor). Variables that load 
near 1 are clearly important in the interpretation of the factor, 
and variables that load near 0 are clearly unimportant. Simple 
structure thus simplifies the task of interpreting the factors. 

Using  logic  like  that  in  the  preceding  quote,  Thurstone  
(1947)  first  proposed  and  argued  for  five criteria that 
needed to be met for simple structure to be achieved:  

1. Each variable should produce at least one zero 
loading on some factor.  

2. Each factor should have at least as many zero 
loadings as there are factors. 

3. Each pair of factors should have variables with 
significant loadings on one and zero loadings on the 
other.  

4. Each pair of factors should have a large proportion of 
zero loadings on both factors (if there are say four or 
more factors total). 

5. Each pair of factors should have only a few complex 
variables.  

In order to understand Thurstone’s five criteria, you will need 
to understand a few more concepts: 

1. What’s a zero loading? One rule of thumb (after 
Gorsuch, 1983) is that zero loadings includes any 
that fall between -.10 and +.10.  

2. What’s a significant loading? With a sample size of 
say 100 participants, loadings of .30 or higher can be 
considered significant, or at least salient (Kline, 
2002). With much larger samples, even smaller 
loadings could be considered salient, but in language 
research, researchers typically take note of loadings 
of .30 or higher.  

3. And what are complex variables? Simply put, these 
are variables with loadings of .30 or higher on more 
than one factor. 

Two elements typically whether orthogonal and 
obliquerotation strategies will generate similar or identical 
results (i) the degree of correlation between the factors, and 
(ii) the factor to variable ratio. When the ratio of variables to 
factors is small, both rotation strategies will produce similar 
results, as simple structure will tend to be the same regardless 
of the type of rotation.  

Further, if the correlation between the factors is small (that is, 
factor correlation coefficients closer to zero), then orthogonal 
and oblique rotation strategies will generally produce similar, 
if not identical, results. In a nutshell, choosing a rotation 
strategy to employ in factor analysis is not an arbitrary 
decision; rather, the appropriate choice of either an orthogonal 
or oblique rotation largely depends on the goals of the 
analysis (best fit to data or replicability of the analysis), the 
factor to variable ratio, and the degree of correlation between 
the factors(Warne and Larsen, 2014). 

There is also an argument in favor of orthogonal rotation as 
the mathematics are simpler, and that made a significant 
difference during much of the 20th century when EFA was 
performed by hand calculations or much more limited 
computing power. Orthogonal rotations are generally the 
default setting in most statistical computing packages. 

There does not seem to be a compelling reason for modern 
researchers to default to orthogonal rotations.  In the social 
sciences (and many other sciences, such as biomedical   
sciences)   we   generally   expect   some correlation  among  
factors,  since  behavior  is  rarely partitioned  into  neatly  
packaged  units  that  function independently  of  one  another.   

Therefore   using orthogonal  rotation  potentially  results  in  
a  less  useful solution  where  factors  are  correlated.    
Remembering that Exploratory Factor Analysis (EFA) is an 
exploratory technique  (not  a confirmatory technique), we 
should be looking for the clearest  solution  possible.    
Besides, there does not appear to be a drawback to using 
oblique rotation even if the factors are truly uncorrelated.   
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Oblique rotations do  not  force  factors  to  be  correlated,  
and  so  in  that instance,  the  factors  would  be  allowed  to  
assume  a correlation of zero, and the solution would be the 
same as that of an orthogonal rotation. 

Oblique  rotation  output  is  only  slightly  more complex  
than  orthogonal  rotation  output,  but  should yield  either  
identical  or  superior  results  to  that of orthogonal rotations.  
In SPSS output the rotated factor matrix  is  interpreted  after  
orthogonal  rotation;  the rotated factor matrix represents both 
the loadings and the correlations between the variables and 
factors.   

In contrast, when using oblique rotation the pattern matrix is  
examined  for  factor/item  loadings  and  the factor 
correlation  matrix  reveals  any  correlation  between  the 
factors.  The  pattern  matrix  holds  the  loadings  (which are  
of  most  interest),  and  each  row  of  the  pattern matrix  can  
be  thought  of  as  a  regression  equation where the 
standardized observed variable is expressed as  a  function  of  
the  factors,  with  loadings  as  the regression  coefficients.  
The structure  matrix  holds  the correlations  between  the  
variables  and  the  factors, which  are  generally  of  less  
interest  in  exploratory applications (Gorusch, 1983) 

There are a variety of choices in each category. Varimax  
rotation  is  by  far  the  most  orthogonal rotation,  likely  
because  it  is  the  default  in  many software packages, but 
also because it was developed as an  incremental  
improvement  upon  prior  algorithms quartimax, and 
equamax.  There is no widely preferred method of oblique 
rotation; all tend to produce similar results (Fabrigar et al., 
1999), and it seems generally fine to use the default settings in 
software packages. Common oblique rotations you will see 
include: direct oblimin, quartimin, and Promax 

The mathematical algorithms for each rotation are different, 
and beyond the scope of this brief technical note.  Note that 
for all rotations, the goal is the same: simplicity and clarity of 
factor loadings.   

VII. CONCLUSION 

In conclusion, the study recommends that practitioners will 
usually find it useful to try one oblique rotation method (for 
example, direct oblimin or promax, while examining the 
factor correlation matrix for values over ±0.32, using the 
criterion explained in Tabachnick & Fiddell, 2007) and one 
orthogonal rotation method (for example, the ever-popular 
varimax rotation). Also consider whether there are any 
theoretical reasons why an orthogonal method might be 
preferable to an oblique method or vice versa. Above all, the 
rotated results should be examined for simple structure, at 
least following Kline’s (2002) relatively flexible definition: 
“...that each factor should have a few high loadings with the 
rest of the loadings being zero or close to zero...” (that is, less 
than ±0.10 after Gorsuch, 1983). The view of the study is that  
in  the  modern  era  of  high-power  computing,  orthogonal  
rotations  are  probably not a best practice, as oblique 

rotations can accurately model  uncorrelated  and  correlated  
factors,  whereas orthogonal  rotations  cannot  handle  
correlated  factors as effectively.  Thus, there is little cost to 
using oblique rotations regardless of the underlying 
relatedness of the factors. 
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