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Abstract:-In this paper we discuss about special function with g-
analog and find out relation of g-Gamma function into Laplace
Transform and Fourier Transform. We find out some new
property and relations.

Keywords — Special Function, Laplace Transform, Fourier
Transform, g-analog.

I. INTRODUCTION

uantum calculus or g- calculus is widely used in

Mathematics. It is considered to be one of the most
difficult subject to engage in mathematics. Quantum calculus
and its application use in various fields of Physics, Mechanics
and Mathematical Science. In previous years g-analogy play
important role in Mathematics like g-Gamma function, g-Beta
function and g-Integral Transform etc.

In this paper we present the definition of q — beta function and
generalized g —gamma function and their relation and
properties on g-integral.

We give notation and preliminaries of g analog in second
section and discuss about g-pochhammer symbol. In third
section we will define generalized g-gamma function and g
beta function and their relation to integral transform and
obtain some auxiliary result.

Notations and Preliminaries

g —-Pochhammer symbol-First we define how to apply g-
notation in factorial n! , we now that by definition of limits,
for g tends to 1.

_1-4

[n]or [n], = 1—q
1-ql-¢*1-¢° 1-q"
1-gql1-q1-g 1—gq

=(1+QU+q+G%) e

=1+q+ q2 + ...qn—l + ot qn o
Then g-shifted factorial notation are
1 n=0

n—1
(a ; q>n = 1_[(1 _ qa+m)
m=0

We also write this type
(@ ahn = (9% @

Furthermore 0 < |q| < 1
@a. = | [a-agm
m=0

@9
(aq*; @)=
For |x] < 1,]|q] <1 Power Series corresponding to

i(a) g — N (qa;q)k Xk — (aX; q)oo
= ‘Kl & (@ (% Q)

(@ =

g-Exponential function —

The exponential function ex has many different g-extensions,
one of them is defined as
k
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Consequently in the limitq — 1, we have limy_,;(E,(1 —
q)x=ex.

g-Gamma Function-
Jackson defined g —analogue of the gamma function by I, (n)

Let us define
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Generalized Gamma Function-

Classical gamma function extends infinitely many ways. This
is useful to Mathematical problems. It is also called extension
of gamma function.
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Defination.1-The generalized gamma function is defined
by[5]

_xk
(@) = fy x*Tex dx k>0, Re (a)>0

Generalized gamma function, is a one parameter k-
deformation, k>0 a real number of the classical gamma
function it is also denoted in the form of pochhammer symbol
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g-Generalized Gamma Function-

we give Jackson integral equation for g-generalized gamma
function and beta function in terms of exponential function
and pochhammer symbol are given by following formula[5].
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Il. MAIN RESULT

Properties of g-Generalized Gamma Function

Theoreml1.1.The generalized gamma function satisfy the
following equation

1—‘q,k (Uv + k) = [a]q,k Fq,k(a)
k >0 and g tends to 1

Proof- We know that generalized gamma function is
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Theorem-1.2 (log —convex property) Let 1 < a < o and §+%
=1,(k > 0,b > 0 then
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Proof- By defination of q generalized gamma function
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By Holder Inequality
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In above Theorem some special case can be gained. Ifa=Db
=2, X,y >0, Then result is
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Defination.2. The g-generalized beta function is defined by
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Theorem 1.3 (Relation between generalized beta and gamma
function)
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Proof-By property of gq-generalized gamma function
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Relation Between

Transform-

g-Gamma Function and Integral

We introduce a new concept, namely g-Laplace transform of a
function, which will play a similar role in mathematical
analysis as well as mathematical physics. we generalized the
function in terms of g —analog and find relation between
generalized gamma function.

g-Laplace Transform is

1
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Above Laplace Transform can be written in this form
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Generalized g-Laplace Transform is
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Theorem 1.5

Relation between Gamma function and Fourier transform. if
s>0 then
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