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Abstract: A time series modeling approach (Box-Jenkins’ 
ARIMA model) has been used in this study to forecast theft 
criminal offence in Kwara state. This study is centered on Time 
Series Analysis of Data on theft criminal Offences in Kwara State 
from 2006– 2015 which is restricted to only theft criminal 
offences in the state.   

The best model is the model with the least AIC Value which is 
SARIMA (0,1,1)(2,0,0)[12] having its AIC Value to be 898.98. 
The ACF of Residual showed that nearly all the spikes are within 
the line of boundary and the Ljung-Box statistics showed that all 
p-value points are above 0.05 thereby showing the accuracy of 
the model is good to forecast. The histogram showed that 
residual for the forecast which reveal that the error term for the 
forecast satisfies the assumption of normality, i.e. residual of the 
forecast is normally distributed. It was concluded that there is no 
residual autocorrelation i.e. there is evidence of non-zero 
autocorrelations in the forecast errors at lags 1 to 21. It 
recommend that Government is therefore advised to aside 
Security operatives engage Landlords, Household heads, market 
women, communities/street leaders and elders as an extended 
mediums of getting security information. 

Key words: Forecasting, Time Series Modeling, ARIMA, Assault, 
Kwara. 

I. INTRODUCTION 

rimes become a national or community problems when it 
is chronic and systematic and its coincidence, pattern and 

seriousness become a threat to the general wellbeing of 
people. There are four indicators of whether or not a country 
or state has crime problem. These indicators are; the extent, 
seriousness, pattern and the control capacity or effectiveness 
of crime control institutions. Based on this fact, we can boldly 
say “Nigeria has a crime problem” 

In recent times, armed violence has taken several forms in 
most of the states of the North Central region of Nigeria 
which Kwara state is an active member. Between 2012 and 
2013, armed robbers attacked banks in both share and Omu-
Aran, headquarter of Ifelodun and irepodun Local 
Government Area respectively leaving scores of people dead 
with an unimaginable degrees of injuries to others. This 
eventually led to the closure of banks in Omu-Aran exposing 
the residents of the ancient town and its environs to danger of 
keeping money at home. 

In December 19th 2013, Offa was thrown into pandemonium 
as armed bandits reportedly numbered up to 30 stuck the town 
and invaded four commercial banks in the town. The 

operation which was said to have lasted for about two hours 
also rendered 10 policemen, 16 civilians dead and several 
sustained brutal injuries with several millions of naira carted 
away by the hoodlums (Weekly trust newspaper, 21st 
December, 2013). 

Since this incident, residents of Offa, Omu-Aran, Share have 
been battling with fear of another attack. The fear of attack 
spread to Ilorin, the state capital, as banks in Ilorin throughout 
December/January 2013 and 2014 respectively were rendering 
skeletal services to their customers in a bid to minimize their 
possible losses in the event of an attack. This research work 
which is concerned with theft is aimed to fit an appropriate 
time series model. 

II. LITERATURE REVIEW 

Over the years, many theories have been presented in attempts 
to define and explain criminal activity. Some of these have 
focused on individual criminals while others examine the 
aggregate crime within an area. Although, the public 
perception may be that crime is randomly distributed in space, 
extensive evidence now exists that it is not. In this work, we 
dig into varieties of articles published on crime across the 
globe in order to have insight and general views of how 
crimes affect different nations of the world. 

The changing picture of crime rates and public attitudes 
towards crime over time is a complex relationship that may 
not be fully explained by univariate analysis of crime rates on 
people’s concern for crime. Criminologists, law enforcement 
agencies, and researchers from many academic disciplines 
have noticed that the public has maintained the belief that 
violent crime is out of control despite the fact that crime rates 
have been steadily declining for years. A 2008 study confirms 
that despite dramatically decreased crime rates in recent years, 
the public continues to believe that violent crime rates are out 
of control (Duffy, Wake, Burrows, & Bremner, 2008). As 
long as this belief persists, the public tends to blame the 
government for failing to properly address their beliefs about 
crime rates and for neglecting to meet their personal safety 
needs (Duffy, et al. 2008). Researchers, policy makers, and 
law enforcement officials in the U.S. benefit from awareness 
of the public’s varying relationship with true crime rates. If 
we can better understand if and when people are making 
logical decisions about their concern for crime relative to 
crime rates, we can address how to improve instances of 
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irrationality when people use competing sources of 
information to learn about crime. 

Public perceptions of crime may be swayed by several 
contributing factors. Felson (2002) contributes a theory for 
predicting people’s concern for crime and attempts to explain 
why concern for crime and falling crime rates do not always 
align. Felson’s random crime fallacy argues that people 
believe crime is random and unpredictable, while the opposite 
is more likely true – that crime events are actually predictable.  

CNN reports informed us that USA and UK had already 
started public orientation and education of their citizens on the 
danger of joining any terror group. It had already being made 
a punishable offence and a law. Research has shown that 
education have a strong negative relationship with crimes. 
Education has been shown to have a strong negative 
correlation with crime. Machin, Marie and Vujie (2011) 
estimate that 1% point fall in the proportion of males leaving 
school with no qualifications would reduce property crime by 
a roughly equivalent amount. No such effect is observed for 
violent crime. Machin, Marie and Vujie (2011) study youth 
crime in more detail, identifying strong crime reducing 
impacts of education (this time on both property and violent 
crime). If government can introduce compulsory education for 
all and sundry in Nigeria, we believe it is a bold step forward 
to saving the future and avail the future of high crime rates 
which is obviously visible if plans to curtail are not in place. 
That is, the higher the number of educated; the lower the 
crime rates in the societies and vice versa. 

III. METHODOLOGY 

The statistical techniques that are useful for analyzing time 
series data will be review in this topic. The analysis of time 
series is based on the assumption that successive values in the 
data file represent consecutive measurement taken at equally 
spaced intervals. 

IV. SOURCE OF DATA AND METHOD OF DATA 
COLLECTION 

The data used for this project work was collected from Kwara 
State Police Command Headquarter, Kwara State. The method 
employed is secondary method of data collection. Secondary 
data is a type of data which is already made that is, it has been 
developed by another person and not by the researcher. The 
data used in this project work is a monthly data of criminal 
offences collected on two different criminal acts; (1) THEFT 
(2) ASSAULT. The sample of study is Kwara State Police 
Command Headquarter. The data is secondary in nature and 
covers a period of ten (10) years from 2006 to 2015. The data 
is restricted to the number of criminal offences recorded at the 
state command only. 

V. METHOD OF DATA ANALYSIS 

A time series is a collection of observation made sequentially 
at equal interval of times this is denoted by Xt, where Xt is the 
observed value at time (t). The fundamental important of time 

series is that the observations are taken at regular interval of 
time. These observations are dependent on time and the 
successive observations are dependent on one another. Time 
Series Analysis (TSA) involves the degree and pattern of 
dependent observation Xt. 

Auto Regressive Integrated Moving Average (ARIMA) 

The ARIMA methodology was proposed by Box (1976), and 
it is now a quite popular tool in economic forecasting. The 
basic idea is that a stationary time series can be modeled as 
having both an autoregressive (AR) and a moving average 
(MA) component Non-stationary integrated series can also be 
handled in the ARIMA framework, but it has to be reduced to 
stationary beforehand by differencing the data.  The 
multiplicative ARIMA representation can be written as 

𝛷௣(𝐿)(1 − 𝐿௦)D(1 − 𝐿௦)d    

                             𝑦௧ = 𝛿 + 𝜃௤(𝐿)𝜃௤𝐿(𝜀௧)………(2.7) 

Where𝛷௣(𝐿), 𝜙௣(𝐿)𝑎𝑛𝑑𝜃௤(𝐿) are polynomials in the lag 
operator (L), d and D are the number of consecutive and 
seasonal differences needed to make the series stationary, p, 
p,q and Q are the degrees of the autoregressive and moving 
average polynomials and 𝜀௧ is a normally distributed random 
error with zero mean and constant variance. The model is 
multiplicative in the sense that the; observed data result from 
the successive filtering of a random noise (𝜀௧) through the 
non-seasonal filter (𝑓௣(𝐿)) and then the seasonal filter 
(FP(L)). The model is given as; 

𝑋௧ = ∑ ∅௉
௜ୀ௜ t𝑋௧ + 𝑒௧ − ∑ 𝜃

௤
௝ୀ௜ t𝑒௧ି௝  ………. …..  (2.8) 

Where фଵ,фଶ,…ф௣, 𝜃ଵ𝜃ଶ, … . , 𝜃௣, are parameters tobe 
estimated, 𝑋௧ିଵ are the lagged values of the series, 𝜀௧ିଵand are 
the lagged values of the white noise process? 

The modeling procedure can be divided in three parts. In 
the first stage, the order of differencing and the degrees of the 
AR arid MA polynomials are determined using both the 
estimated autocorrelation and partial autocorrelation 
functions. In the second stage, the parameters (f, F q and Q) 
are estimated and several tests are performed to assure that the 
residuals are white noise. Likelihood methods are generally 
used for estimation purposes, but if the model has only an AR 
part least squares estimation will be appropriate. Finally, in 
the third stage, the best most parsimonious model is used to 
obtain the forecasts. The likelihood function stationary model 
can be written as  

L(ф,θ,𝛿ଶ/𝑦௧) = (2𝜋)-T/2(𝛿ଶ)-T/2𝑒𝑥𝑝[(−
ଵ

ଶఋమ
)∑𝑒ଶ] ..  (2.9) 

Identification of ARIMA Models 

The objective of the identification is to select a subclass of the 
family of ARIMA models appropriated to represent a time 
series. We follow a two-step procedure: first, get a stationary 
time series, that is, we select the parameter  of the Box-Cox 
transformation and the order of integration d, and secondly we 
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identify a set of stationary ARIMA processes to represent the 
stationary process, that is, we choose the orders (p, q) 

Analysis 

Time Plot Graph for Theft Offence  

 

Fig 3.1: Time Plot Graph for Theft Offence 

Fig 3.1 above shows the pattern of movement for the data on 
Theft criminal offences; and hence there will be a need to test 
for the stationary of the data. 

Unit Root Test of Stationary 

Table 3.1 DICKEY-FULLER TEST FOR THEFT OFFENCE 

Dickey fuller 

Augmented Dickey-Fuller Test 

data:  Theft 

Dickey-Fuller = -2.2204, Lag order = 4, sig-value = 0.485 

alternative hypothesis: stationary 

 

The appropriate hypotheses for conducting Dickey-Fuller 
Tests are as follows: 

Null hypothesis, H0: There is no stationarity 

Versus 

Alternate hypothesis, H1: There is stationarity 

By adopting the conventional Decision Rule, the decision 
arising from the entries in Table 3.1 is since significance-
value (0.845) is greater than the p-value; α(= 0.05); 

Hence the appropriate conclusion for the dataset is that it is 
not stationary at 0.05 level of significant. The consequence of 
this conclusion is that the condition of stationarity has not 
been affirmed, and therefore there is need to perform 
differencing. 

Differenced Data On Theft First Time 

Time Plot Graph Showing the Description of The Differenced 
Data On Theft Criminal Offence 

 
Fig 3.2 Time Plot Graph for Differenced Data on Theft Criminal Offence 

Fig 3.2 shows that the pattern of movement of the differenced 
data and therefore test for stationary is required. 

Unit Root Test of Stationary 

Table 3.2 DICKEY-FULLER TEST FOR THE DIFFERENCED DATA 

Augmented Dickey-Fuller Test 

data:  Theftdiff 

Dickey-Fuller = -7.0184, Lag order = 4, p-value = 0.01 

alternative hypothesis: stationary 
 

 

The appropriate hypotheses for conducting Dickey-Fuller 
Tests are as follow: 

Null hypothesis, H0: There is no stationarity 

Versus 

Alternative hypothesis, H1: There is stationarity 

By adopting the conventional Decision Rule, the decision 
arising from the entries in Table 3.2 is since p-value (0.01) is 
less than the significant level, α(= 0.05); 

Hence the appropriate conclusion is the dataset is stationary at 
0.05 level of significant. The consequence of this conclusion 
is that the condition of stationarity has been affirmed, and 
therefore there is no need to perform any form of differencing. 

Seasonal Decomposition Chart for Theft Offence 

 
Fig 3.2 Show the seasonal decomposition graph of time series for theft 

offence 

The above fig 3.2 chart of decomposition shows the 
description of the data on theft after differencing once which 
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shows that the movement of the trend is not really affected by 
time thereby normalizing the data to be stationary. Also, it 
shows the seasonality of the data which reveal that there is 
presence of seasonal component in the series and therefore 
seasonal ARIMA MODEL becomes appropriate in order to 
correct or adjust for seasonality. 

Table 3.3  TEST FOR AUTOCORRELATION AND PARTIAL 
AUTOCORRELATION 

Lag ACF PACF 

1 -0.29 -0.29 

2 -0.13 -0.23 

3 0.01 -0.12 

4 -0.19 -0.3 

5 0.17 -0.03 

6 -0.02 -0.08 

7 0.02 -0.01 

8 0.13 0.13 

9 -0.06 0.11 

10 -0.2 -0.17 

11 0.11 0.01 

12 0.09 0.11 

13 0.1 0.19 

14 -0.04 0.06 

15 -0.26 -0.18 

16 0.12 -0.04 

17 -0.04 -0.09 

18 -0.03 -0.13 

19 0.13 -0.06 

20 0.07 0.09 

21 -0.12 -0.08 

     For the correlograms analysis, a maximum lag of 21 was 
used with their respective ACF’s and PACF’s. The 
corresponding ACF and PACF’s values are provided in Table 
3.3 

Correlogram Graph For Theft 

 

Interpretation: Fig 3.3a chart of ACF for Theft shows lag 1 to 
be significant negatively (-0.29), lag                                                                                                                   
59 with a small cut off from the boundary to be negatively 
significant (-0.06) and lag 14 is also negatively significant (-
0.04). Likewise, fig 3.4b of the PACF shows lag 1, lag 2 and 
lag 4 to be significant negatively (-0.29,-0.23 and -0.3); 
therefore since the ACF is significant at the first lag and the 
PACF is significant at the first and the second lag; 
parsimoniously, we suggest the model 
SARIMA(1,1,2)(1,1,0)12 with one seasonal difference for the 
original time series. 

Table 3.4: Showing the Parsimoniously Selected Models with their respective 
AIC value 

Selection of Model 

MODE MODEL TYPE AIC Value 

1 SARIMA(2,1,2)(2,0,0)[12] 901.87 

2 SARIMA(0,1,1)(2,0,0)[12] 898.98 

3 SARIMA(1,1,2)(2,0,0)[12] 899.16 

4 SARIMA(2,1,1)(1,0,0)[12] 900.49 

5 SARIMA(1,1,0)(2,0,0)[12] 911.72 

 

Note that, having selected all these models with their 
respective AIC in the above table 3.5, and also using 
auto.arima command, it is shown that the best model is the 
model with the least AIC Value which is SARIMA 
(0,1,1)(2,0,0)[12] having its AIC Value to be 898.98. 

Table 3.5 Best model: SARIMA(0,1,1)(2,0,0)[12] with zero mean 

Series: Theft 

SARIMA(0,1,1)(2,0,0)[12] with zero mean      

 

Coefficients: 

          ma1    sar1     sar2 

      -0.5905  0.2249  -0.0382 

s.e.   0.0860  0.1039   0.1214 

sigma^2 estimated as 106.3:  log likelihood=-445.49 

AIC=898.98   AICc=899.33   BIC=910.1 
 

Yt = -0.5905et-1-0.2249t-12+0.0382t-12 

  Table 3.5 SHOWING PREDICTIONS FOR JANUARY to DECEMBER, 
2016 

Point Forecast Lo.95 Hi.95 

Jan-16 9.591449 -10.6149 29.7978 

Feb-16 9.816333 -12.0188 31.65147 

Mar-16 10.90256 -12.448 34.25315 

Apr-16 11.61113 -13.1624 36.38463 

May-16 10.5249 -15.5941 36.64392 

Jun-16 11.98879 -15.4098 39.38732 
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Jul-16 11.20383 -17.4171 39.82474 

Aug-16 11.43299 -18.3602 41.22616 

Sep-16 11.8021 -19.1189 42.72312 

Oct-16 11.53902 -20.4701 43.54818 

Nov-16 10.94075 -22.1208 44.00226 

Dec-16 9.472596 -24.6088 43.55397 

 

 
Fig 3.4 showing the forecast graph from the ARIMA(0,1,1)(2,0,0)[12] model 

The chart in fig 3.5 above shows the forecast for Theft 
criminal offence for the year 2016 with the upper and lower 
limits of 95% and 80% respectively  

Diagonistic Test for the Model 

 

Fig 3.6a, 3.6b and 3.6c above shows that the model is 
independently distributed residuals, that is, the residual shows 
that the model is random. Also the ACF of Residual showed 
that nearly all the spikes are within the line of boundary and 
the Ljung-Box statistics showed that all p-value points are 
above 0.05 thereby showing the accuracy of the model is good 
to forecast. 

Table 3.6 BOX-LJUNG TEST FOR FORECAST ERROR 

Box-Ljung test 

data:  b$residual 

X-squared = 29.099, df = 20, p-value = 0.08584 
 

 

The appropriate hypotheses for conducting Box-Ljung Tests 
are as follows: 

Null hypothesis, H0: No residual autocorrelation 

Versus 

Alternative hypothesis, H1: Presence of residual 
autocorrelation 

By adopting the conventional Decision Rule, the decision 
arising from the entries in Table 3.8 is not to reject Ho, since 
p-value (=0.08584) is greater than level of significance, α 
(=0.05); 

Hence, the appropriate conclusion is that there is no residual 
autocorrelation i.e. there is evidence of non-zero 
autocorrelations in the forecast errors at lags 1 to 21. 

Testing For the Normality of the Forecast Residual 

The test for the normality of the forecast errors is done by 
plotting the time plot for the forecast errors and check whether 
they meet the assumption of normality. 

 
Fig 3.5 showing the plot for forecast error to check if assumption of normality 

is satisfied 
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The time plot of the in-sample forecast errors in fig 3.7 shows 
that the variance of the forecast errors seems to be roughly 
constant over time (though perhaps there is slightly higher 
variance for the first half of the time series). Therefore, it is 
plausible that the forecast errors are normally distributed with 
mean zero and constant variance. Since successive forecast 
errors do not seem to be correlated, and the forecast errors 
seem to be normally distributed with mean zero and constant 
variance, the SARIMA(0,1,1)(2,0,0)12 does seem to provide 
an adequate predictive model for the monthly record of Theft 
criminal offence in Kwara State. 

 
Fig 3.6: Histogram of forecast errors 

The histogram in fig 3.8 above shows the residual for the 
forecast which reveal that the error term for the forecast 
satisfy the assumption of normality, i.e. residual of the 
forecast is normally distributed. 

VI. DISCUSSION OF RESULTS 

The summary of this study is that after plotting the time plots 
against time (t), Theft exhibited a non-stationarity of which 
we differenced so as to make it stationary which was achieved 
after the first differencing; likewise Assault exhibited a 
constant mean and variance, also the test for the seasonality 
showed there was seasonality present in the data’s’ (Assault). 
The ACF table for Assault shows lag 1 to lag 12 appear to 
differ significantly from zero (they lay outside the 95% 
confidence bound), and they are positive. This indicates that 
some months has an above average criminal offence on 
assault; given MA (0). Likewise, the PACF shows lag 1 to be 

significant positively thereby showing an AR (1); 
parsimoniously, suggested an ARMA (1,0,0). Then a test for 
the adequacy of the fitted model was carried out using the 
Ljung-Box test which confirms the adequacy of the model. A 
forecast for 12months was carried out. The model developed 
was also used in forecasting for 12months starting from 
January 2016-December 2016, 95% confidence interval 
forecast and the time plot of the forecasted data depicts a 
parallel movement with time. 

VII. CONCLUSION 

Based on the analysis carried out, Kwara State may likely 
experience decrease in crime rates after which the occurrence 
will continue to follow the historic pattern. In essence, Kwara 
state is moderately save but a critical examination of the 
forecast ignites fear of victimization if government and 
security stakeholders do not intensify efforts and map out 
strategies of bringing the prediction under control. 

VIII. RECOMMENDATIONS 

The ARIMA models are recommended for forecasting Crime 
rate in Kwara state whilst but the following precaution 
measures should be taken into consideration in order to 
prevent wrong application of model which in turn may lead to 
spurious and misleading forecasting values into the future: 
The models should not be used to forecast long time ahead 
(preferably a maximum of 12months). This is because long 
time periods could lead to arbitrary large forecasts values. 
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