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Abstract: Wind energy generated by using wind as a fuel is clean 

and non-polluting as a result it has become more widespread 

today. However, the uncertainty in the aerodynamic parameters 

makes the wind energy to cost more. Many researches have been 

done to increase the wind turbine efficiency, but they fail to 

consider this uncertain aerodynamic parameters. In this paper 

an adaptive control technique, which resembles the existing 

quadratic controller used by the wind industry for variable speed 

wind turbines below rated power, is designed to reduce the 

negative effects of this uncertainty. This adaptive controller uses 

a simple, highly intuitive extremum seeking scheme designed to 

seek out the optimal gain for maximizing the turbine’s energy 

capture. The adaptive controller has been tested and validated 

using MATLAB simulation. 

Key terms: adaptive control, extremum seeking scheme, gradient, 

stability, variable speed wind turbine 

I. INTRODUCTION 

ind energy is a rapidly growing renewable energy 

source within the world today.  The process of wind 

power generation will never release any pollutants to the 

atmosphere, thus it does not yield any end-results, which 

could damage the environment. Nowadays, wind turbines 

must contend with various other energy generations. Hence, 

they should produce power with less cost. The wind turbine 

efficiency can be increased by developing advanced and 

sophisticated control algorithms. The focus of this report is 

the design of an adaptive controller to maximize energy 

capture at lower wind speeds. Wind turbines can be divided 

according to the orientation of the spin axis in to horizontal 

and vertical axis type turbines. Horizontal axis wind turbines 

(HAWT) are the most commonly used turbines today. They 

have an axis of rotation parallel with the wind stream. 

Whereas vertical axis wind turbines have an axis of rotation 

perpendicular to the wind direction and they are less 

commonly used [1]. Based on operating mode wind turbines 

can be classified as constant and variable speed wind turbines. 

In constant speed wind turbines the rotor turns at a specified 

constant speed. Because of the constrained rotor speed the 

optimum aerodynamic efficiency cannot be achieved at all 

wind speeds. On the other hand, variable-speed wind turbines 

run at optimal efficiency because rotor speed is made 

proportional to the wind speed (below its rated wind speed) 

[2]. There are three basic regions of operation in variable 

speed wind turbines as shown from figure 1.  

 

Figure 1: Steady state power curves [3] 

Although, the principle of variable speed wind turbines are 

better than constant wind turbines, the uncertainty in the 

aerodynamic parameters can cause variable speed wind 

turbines to capture even less power than constant speed 

turbines at lower wind speeds if the controller used is not 

advanced. Therefore, the main objective of this research is to 

design an adaptive controller algorithm that can maximize the 

power capture of variable speed wind turbine in region 2 (i.e. 

at wind speeds lower than rated wind speed). 

Many researchers have developed methods for limiting power 

and speed in region 3 such as speed regulation of wind 

turbines by Stol and Balas [4], Hand [6] and feedback 

linearization control for wind turbine by kumar and stol [8]. 

Okedu, K. E [5] and Karakasis, N., et al [7] proposed new 

schemes for Optimizing wind turbine performance. Although, 

they are effective in achieving their corresponding control 

objectives, they fail to consider the uncertain aerodynamic 

behavior of variable speed wind turbines which is common 

from real turbines. Quadratic controllers, such as those 

presented by Freeman and Balas [9], Song et al. [10] and pitch 

and torque control of variable speed wind turbine by 

Arkadiusz Kulka [11], force the turbine to track a desired 

rotor speed in region 2 by assuming that the values of  𝐶𝑝𝑚𝑎𝑥  

and the corresponding 𝜆∗ value is known. But the fact that 

those two parameters are not well known is a major source of 

energy loss in region 2 when these controllers are employed. 

Fuzzy predictive controller developed by Zhang et al [12] 

sufficiently maintains the rotor speed at its optimal value by 

minimizing the cost function. However the study have a 

drawback in that the optimal rotor speed is assumed to be 

W 
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known priori when deigning the controller, but in fact it could 

change with turbine behavior.  

The paper is organized as follows. In section two the 

mathematical modeling of aerodynamic part of variable speed 

wind turbine is developed and is validated by comparing its 

performance with the validated model of Sany wind turbine 

which is found from Adama II wind turbine generation system 

(WTGS). In section three the drawback of the existing 

quadratic controller is discussed, the proposed adaptive 

controller (i.e. Extremum seeking scheme) is designed and the 

stability analysis of the proposed adaptive controller is 

discussed. In section four the Simulink block diagram of the 

control algorithm and the discussion of the simulation results 

is presented. Finally, the conclusions are presented in the 

section five. 

II. SYSTEM MODELING AND VALIDATION 

The system block diagram shown from figure 2 consists of 

two main blocks, such as turbine model blocks (non-linear 

aerodynamic model and linear turbine model) and turbine 

controller block (extremum seeking scheme and generator 

torque control). 

 

Figure 2: A block diagram model of the turbine and the proposed controller 

system 

A. Mathematical Modeling of Wind Turbine 

Figure 3 shows the wind energy conversion system used to 

drive the mathematical modeling of the variable speed wind 

turbine. In this research it is assumed that the generator output 

torque is accurately controlled so that it tracks its reference 

value. A relationship between the output power and the 

various variables constitute the mathematical model of the 

wind turbine. 

 

Figure 3: A typical wind energy conversion system [13] 

The kinetic energy (KE) in air of an object of mass m moving 

with speed v is equal to: 

 𝐾𝐸 =
1

2
𝑚𝑣2                                                                                                                                   (1) 

The KE (in joules) of wind for the mass m and velocity 𝑣𝑤  can 

be calculated by using (1). Therefore the power 𝑝𝑤   in the 

wind can be given as: 

 𝑝𝑤  =
𝑑𝐸

𝑑𝑡
=

1

2

𝑑𝑚

𝑑𝑡
𝑣𝑤

2                                                                                                                               (2) 

But mass flow rate is given by  
𝑑𝑚

𝑑𝑡
 = 𝜌𝐴𝑣𝑤  where A is the area 

through which the wind in this case is flowing and ρ is the 

density of air, then (2) becomes: 

 𝑝𝑤  =
1

2
𝜌𝐴𝑣𝑤

3                                                                                                                                    (3) 

The actual mechanical power (𝑝𝑒𝑥𝑡  )  extracted by the rotor 

blades in watts is the difference between the upstream and the 

downstream wind powers [14], i.e. 

 𝑝𝑒𝑥𝑡 =
1

2
𝜌𝐴𝑣𝑤 (𝑣𝑢

2 − 𝑣𝑑
2)                                                                                                                                   (4) 

Where, 𝑣𝑢  is the upstream wind velocity at the entrance of the 

rotor blades in m/s and 𝑣𝑑   is the downstream wind velocity at 

the exit of the rotor blades in m/s and 𝑣𝑤  being the average of 

the velocities 𝑣𝑢  and 𝑣𝑤 . From the mass flow rate, we may 

write: 

 𝜌𝐴𝑣𝑤 =
𝜌𝐴 𝑣𝑢 +𝑣𝑑 

2
                                                                                                                                   (5) 

With this expression, (4) becomes 𝑝𝑒𝑥𝑡 =
1

2

𝜌𝐴 𝑣𝑢 +𝑣𝑑 

2
(𝑣𝑢

2 −

𝑣𝑑
2), which after a little simplification becomes: 

  𝑝𝑒𝑥𝑡 =
1

2
 𝜌𝐴𝑣𝑤

3 𝐶𝑝                                                                                                                                    (6) 

Where, 𝐶𝑝 =
1− 

𝑣𝑑
𝑣𝑢

 
2

+
𝑣𝑑
𝑣𝑢

− 
𝑣𝑑
𝑣𝑢

 
3

2
 

𝐶𝑝  is often called the Betz limit after the Germany physicist 

Albert Betz who worked it out in 1919. Other names for this 

quantity are the power coefficient of the rotor or rotor 

efficiency. The Betz limit says that no wind turbine can 

convert more than 59.3% of the kinetic energy of the wind 

into mechanical energy turning a rotor, i.e.  𝐶𝑝𝑚𝑎𝑥 =  0.59.  

Wind turbines cannot operate at this maximum limit though. 

The power coefficient 𝐶𝑝  is the most important parameter in 

the design of wind power plants. The model of 𝐶𝑝  is [15]: 

 
𝐶𝑝(𝜆, 𝛽) = 𝑐1  𝑐2

1

𝛾
− 𝑐3𝛽 − 𝑐4𝛽

𝑥 − 𝑐5 𝑒
−𝑐6

1

𝛾                                                                                                                                    
(7) 

Where, the values of the coefficients 𝐶1 − 𝐶6 depend on 

turbine type. In this thesis, the following values have been 

used, 𝐶1 = 0.5 , 𝐶2 = 90.1, 𝐶3 = 0.4, 𝐶4 = 0, 𝐶5  = 5,
𝐶6  =  15 

𝛾 is defined by [15]: 

 1

𝛾
=

1

𝜆+0.08∗𝛽
−

0.035

1+𝛽3                                                                                                                                   (8) 

The aerodynamic torque can be found as: 

           𝑇𝑎𝑒𝑟𝑜  =  
1

2
 𝜌𝐴𝑅3(𝐶𝑝(𝜆, 𝛽)/𝜆3)𝜔2                                                                                                                                   (9) 
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This aerodynamic torque is divided into torque of rotor inertia 

and generator (control) torque i.e. 𝑇𝑎𝑒𝑟𝑜 = 𝐽𝜔 + 𝑇𝑐. 

Considering a simple rigid body model of a wind turbine and 

rearranging the above expression we can obtain the dynamic 

equation relating net torque and angular acceleration as: 

 𝜔 = 1/𝐽(𝑇𝑎𝑒𝑟𝑜 − 𝑇𝑐)                                                                                                                                   (10) 

Substitute (11) into (12) to obtain the following dynamic 

equation: 

 𝜔 = 1/𝐽(
1

2
 𝜌𝐴𝑅3(𝐶𝑝/𝜆3)𝜔2 − 𝑇𝑐)                                                                                                                                   (11) 

The diagram of the wind turbine model designed by using 

MATLAB‟s software, Simulink, as shown in the figure 4 

 

Figure 4: Block diagram of wind turbine model by using Simulink 

B. Model Validation 

There are two ways to validate the developed models: either 

by comparing the model‟s output to the output of an already 

validated model, or by comparing the model‟s output to real 

turbine data. In this paper the output of the validated model of 

Sany wind turbine, which is found from Adama II wind 

turbine generation system (WTGS), is used to compare the 

output of the developed model and then to validate it.  

Figure 5 shows the plot of the output power of the developed 

model and the Snay wind turbine. As it is seen from the figure 

the two curves are similar and the visible small difference is 

expected because of the following reasons: the power 

coefficient modeling error, the unconsidered yaw error and the 

variation in efficiency of hub, speedup gearbox and generator. 

Except the yaw error that can be compensated by yaw control, 

which is not a part of the thesis, the error due to the remaining 

two reasons will not affect the proposed control algorithm. 

Because, the entire motivation behind the proposed adaptive 

controller is that the turbine‟s power coefficient is not well 

determined and failure to have an accurate model is the result 

of these uncertainties. Therefore, in spite of the above error 

we can still take the model as a valid model to test the 

proposed control algorithm.  

 

Figure 5: power output of sany WT and the developed model 

III. CONTROLLER DESIGN AND STABILITY ANALYSIS 

A. Controller Design 

Before going to the design part of the proposed controller first 

let us see about the nature and drawback of the existing 

quadratic controller. A control law, which we refer to as the 

quadratic control, is to let the control torque 𝑇𝑐  (that is, the 

generator torque) be given by 𝑇𝑐 = 𝑘𝑐𝜔
2, where, the 

expression of 𝑘𝑐  is given by 𝑘𝑐 =
1

2
 𝜌𝐴𝑅3 𝐶𝑝𝑚𝑎𝑥

𝜆∗
3 . Substitute 

this control law into (13) and rearrange to obtain 𝜔 =
1

2𝐽
𝜌𝐴𝑅3𝜔2(

 𝐶𝑝

𝜆3 −
𝐶𝑝𝑚𝑎𝑥

𝜆∗
3 ). From this equation 𝐽, 𝜌, 𝐴, 𝑅, and 

𝜔2 are all nonnegative, hence the sign of 𝜔  depends on the 

sign of the difference within the parentheses. It is fact that 

𝐶𝑝 ≤ 𝐶𝑝𝑚𝑎𝑥 . Thus, when 𝜆 ≥ 𝜆∗ 𝜔  will be negative and the 

rotor will decelerate towards 𝜆 = 𝜆∗. On the other hand, if 

𝜆 < 𝜆∗ 𝜔  will be positive and the rotor will accelerate towards 

𝜆 = 𝜆∗ when 𝐶𝑝 ≥
𝐶𝑝𝑚𝑎𝑥

𝜆∗
3 𝜆3. 

The existing quadratic controllers force the turbine to track a 

desired rotor speed in region 2 by assuming that the values of 

 𝐶𝑝𝑚𝑎𝑥  and the corresponding 𝜆∗ value is known (i.e. the value 

the gain 𝑘𝑐  is constant). However, the fact that those two 

parameters are not well known is a major source of energy 

loss in region 2 when these controllers are employed. 

The main quality of the extremum seeking controller which is 

going to be designed in this thesis is that it attempts to have 

the turbine power track the wind power but assumes the 

values of  𝐶𝑝𝑚𝑎𝑥  and the corresponding 𝜆 value is unknown 

(i.e. the value of 𝑘𝑐  is varying with respect to the power 

coefficient curve). By this manner the problem of energy loss 

in region 2 can be addressed. The expression of the torque 

control law is similar with that of the quadratic controller as 

shown in (14), where the gain 𝑘𝑐  is replaced by the letter 𝐺.  

 𝑇𝑐 =  
0       𝜔 < 0
𝐺𝜔2  𝜔 ≥ 0

                                                                                                                                    (14) 
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Where, the adaptive gain 𝐺 has the same expression as that of 

the control gain 𝑘𝑐 . 

In this paper a new concept of fraction of power captured 

(𝐶𝑝𝑓 ) is used to calculate the fraction of electrical power 

captured from the wind turbine. It is computed as electrical 

power produced per wind power, i.e. 

𝐶𝑝𝑓 =
𝑝𝑒𝑙𝑒𝑐𝑡

𝑝𝑤
                                                                                                                                   (15) 

Where, 𝑝𝑒𝑙𝑒𝑐𝑡  = over all turbine efficiency (𝜂) ∗ 𝑝𝑒𝑥𝑡   , and 𝜂 

is computed as: 𝜂 = 𝜂𝑕 ∗ 𝜂𝑔𝑏 ∗ 𝜂𝑔 , Where, 𝜂𝑕 ,  𝜂𝑔𝑏  and 𝜂𝑔  

represents the hub efficiency, the gearbox efficiency and the 

generator efficiency respectively. Their corresponding values 

in percent, which are found from the nameplate data of Sany 

wind turbine located from Adama II WTGS, are 96, 97, 97 

respectively. Then the value of 𝜂 can be determined as: 

𝜂 =  0.96 ∗ 0.97 ∗ 0.97 ∗ 100 % ≈ 90% 

This value of 𝜂 can be interpreted as, about 90% of 

mechanical power extracted by the wind turbine is converted 

into electrical power. However, this efficiency value is not 

fixed, such that it may vary over time with respect to wind 

turbine‟s age. But the proposed adaptive control algorithm is 

able to respond to this kind of wind turbine behavior change 

by adapting the gain to new optimal operating point. In other 

words, this value of 𝜂 is considered as the initial efficiency 

value to start the simulation. 

A simulation is conducted by using the dynamic equation of 

wind turbine from (11) and a torque control law equation from 

(14) under different gain (𝐺) values for a developed model of 

Sany WT which can generate a maximum power of 1.5MW at 

rated wind speed of 12m/s. The result is plotted as fraction of 

power produced versus normalized gain 𝐺 (
𝐺

𝐺 
) for each of 

different gain values as shown in figure 6. Where, 𝐺  is the 

assumed optimal operating point based on the standard control 

law coefficient k.  

 

Figure 6:  𝐶𝑝𝑓 Vs normalized gain  (
𝐺

𝐺 
) graph 

As it is seen from the graph of 𝐶𝑝𝑓 Vs normalized gain, 

initially the fraction of power produced increases until the 

optimal value of 𝐺 is reached and after which it starts to 

decrease. The performance characteristic „fraction of power 

produced (𝐶𝑝𝑓 )‟ and power coefficient 𝐶𝑝  are closely related. 

Therefore, it is possible to conclude that 𝐶𝑝𝑓  will be maximum 

when the extracted power from the wind is maximum. Hence, 

𝐶𝑝𝑓  is critically important variable in the analysis done in this 

thesis. 

Extremum Seeking scheme is capable of dealing with 

unknown plants whose input to output maps possess an 

extremum (a minimum or a maximum), and this extremum 

depends on some parameter. Since the graph shown in Figure 

6 possess a maximum point and the objective is to make the 

wind turbine to operate at this maximum value of  𝐶𝑝𝑓  we can 

use extremum seeking or self-optimizing scheme with 

sinusoidal perturbation to achieve the objective the paper.  

1) An intuitive explanation about Extremum Seeking 

Scheme: Suppose we have an unknown map 𝑓(𝜃𝑝). All we 

know about this map is that it has a maximum, but the value 

of this maximum and 𝜃𝑝 = 𝜃𝑝
∗  at which it occurs are both 

unknown to us. We would like to find the value of 𝜃𝑝
∗
 that 

maximizes this map. The output of  the map from Figure 7 is 

fed to a washout filter. The purpose of this filter is to remove 

the bias of the map from the origin. The signal is then 

demodulated and modulated by a sinusoidal perturbation and 

integrated to estimate 𝜃𝑝
∗
 and the result is fed back to 𝑓(𝜃𝑝).  

𝑓(𝜃𝑝) is also referred to as the cost function. Running this 

loop several times will lead to the exponential convergence of 

𝜃𝑝  to 𝜃𝑝
∗
. 

 

 

Figure 7: Basic extremum seeking loop [16] 

2) Design of Extremum Seeking Scheme: The method of 

sinusoidal perturbation is the only method that permits fast 

convergence to the extremum on a time-scale comparable to 

that of the plant dynamics, which is a major advantage over 

the numerically based methods that require the plant dynamics 

to settle down prior to optimization [17, 18]. 
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The idea is to add a small signal (sometimes called 

perturbation signal) to the gain (parameter to be estimated 

(𝐺 )) and then measure the change in the output (𝐶𝑝𝑓 ) with 

respect to this signal. Based on this change, it will be decided 

whether to increase or decrease the gain (estimated parameter 

(𝐺 )). Many methods adopt this approach, of which the 

gradient-based method is the most famous one and is used in 

this paper. 

In the gradient-based approach, the gradient of the output with 

respect to the gain G (i.e.,
𝜕𝐶𝑝𝑓

𝜕𝐺
) is estimated and used to 

determine the direction of change in the estimated gain 𝐺 . The 

gradient of the output with respect to the gain G ( 
𝜕𝐶𝑝𝑓

𝜕𝐺
 ) is 

positive for values below the optimum, negative for values 

above the optimum and zero at the optimum point. The 

objective is making the plant to operate at the optimum point.  

The plant model can be rewritten as follows. 

 𝜔 = 𝑓(𝜔, 𝑇𝑐)                                                                                                                                   (16) 

 𝑇𝑐 = 𝛼(𝜔, 𝐺)                                                                                                                                   (17) 

 𝐶𝑝𝑓 = 𝑕(𝜔)                                                                                                                                   (18) 

Where, (18) is the unknown objective (performance index) 

function which is going to be maximized online. 

 

Figure 8: Gradient based ES scheme using BPF to find the gradient 

As shown in figure 8, a high pass filter (HPF), a multiplier, 

and a low pass filter (LPF) are used to estimate  
𝜕𝐶𝑝𝑓

𝜕𝐺
 . To 

understand the operation of the approach let us assume the 

perturbation signal amplitude a is very small and that the 

estimated gain 𝐺  is almost constant with respect to the 

perturbation signal. Indeed large values for 𝑎 and 𝐾 allow 

faster convergence rates, but respectively increase the 

oscillation amplitude and sensitivity to disturbances. The plant 

output ( 𝐶𝑝𝑓 ) can be approximated by a first-order Taylor 

series near the estimated parameter 𝐺   as: 

 𝐶𝑝𝑓 = 𝐶𝑝𝑓𝑜 +
𝜕𝐶𝑝𝑓

𝜕𝐺
(𝐺 − 𝐺 )                                                                                                                                   (19) 

But to obtain the plant input (estimated gain) 𝐺 a slow 

perturbation signal asin⁡(𝜔𝑝𝑡) is added to the signal 𝐺 , which 

is the current best estimate of the optimum gain 𝐺∗, as given 

in (20).  

The perturbation signal should be slow enough so that the 

plant appears as a static map to the cost function and the 

dynamics do not interfere to the peak seeking scheme. 

Therefore, the plant dynamics in (16) appear as instantaneous 

and the objective function in (18) reduces to 𝐶𝑝𝑓 (𝐺). 

Subsequently, the perturbation amplitude is selected so as to 

obtain small steady state output error.  

 𝐺 = 𝐺 +  asin⁡(𝜔𝑝𝑡)                                                                                                                                   (20) 

Where, 𝜔𝑝  is the perturbation frequency. 

After substituting (20) into (19) the plant output equation can 

be rewritten as: 

 𝐶𝑝𝑓 = 𝐶𝑝𝑓𝑜 + 𝑎
𝜕𝐶𝑝𝑓

𝜕𝐺
sin⁡(𝜔𝑝𝑡)                                                                                                                                   (21) 

The filter cut-off frequencies must be designed in 

coordination with the perturbation frequency 𝜔𝑝 . The purpose 

of HPF is to attenuate the DC component of the cost function 

while preserving the perturbation frequency (𝜔𝑝 ) should be in 

the pass band of the filter. Therefore, its cut-off frequency 

should be selected as 𝜔𝑕 < 𝜔𝑝 , where 𝜔𝑕  is the cut-off 

frequency of HPF. Then HPF is expressed as  
𝑠

𝑠+𝜔𝑕
. The 

expression of the output (cost) function after HPF is depicted 

in (22). 

 𝐶𝑝𝑓 = 𝑎
𝜕𝐶𝑝𝑓

𝜕𝐺
sin⁡(𝜔𝑝𝑡)                                                                                                                                   (22) 

After multiplying (22) by a modulation signal bsin⁡(𝜔𝑝𝑡) the 

following expression will be obtained: 

 𝐶𝑝𝑓 ∗ bsin 𝜔𝑝𝑡 = 𝑎
𝜕𝐶𝑝𝑓

𝜕𝐺
sin 𝜔𝑝𝑡 ∗

bsin 𝜔𝑝𝑡 =
𝑎𝑏

2

𝜕𝐶𝑝𝑓

𝜕𝐺
−

𝑎𝑏

2

𝜕𝐶𝑝𝑓

𝜕𝐺
cos⁡(2𝜔𝑝𝑡)                                                                                                                                   

 

(23) 

By selecting an appropriate cut-off frequency of LPF to filter 

out cos⁡(2𝜔𝑝𝑡) its output can be approximated by 
𝑎𝑏

2

𝜕𝐶𝑝𝑓

𝜕𝐺
 

which is proportional to the gradient  
𝜕𝐶𝑝𝑓

𝜕𝐺
. If 𝜔𝑙  is selected as 

the cut of frequency of the LPF, the expression of LPF is 

given as 
𝜔 𝑙

𝑠+𝜔 𝑙
. Now given an estimate of the gradient  

𝜕𝐶𝑝𝑓

𝜕𝐺
 

(i.e. 𝜉), it is required to control 𝐺 in such a way that drives 
𝜕𝐶𝑝𝑓

𝜕𝐺
 to zero. Therefore, the signal 𝜉 can be thought of as the 

sensitivity  
𝑎𝑏

2

𝜕𝐶𝑝𝑓 (𝐺 )

𝜕𝐺
  and the gradient update law used to 

force 𝐺  to 𝐺∗ is: 𝐺  = 𝑘
𝑎𝑏

2

𝜕𝐶𝑝𝑓 (𝐺 )

𝜕𝐺
. The selection criteria for 

the parameters 𝑎, 𝑏, 𝜔𝑝 , 𝜔𝑕 , 𝜔𝑙  and 𝑘 is illustrated in more 

detail in section 3.2. 

B. Stability Analysis 

By substituting (17) into (16) and by using the expression of 

𝐺 from (20), we will have the following expression: 
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 𝜔 = 𝑓(𝜔, 𝛼(𝜔, 𝐺 +  asin⁡(𝜔𝑝𝑡)))                                                                                                                                   (24) 

Now let us make some assumptions about the existence and 

stability of an equilibrium point similar to those made in [19]. 

Assumption 1: There exists a smooth function 𝑙: ℝ → ℝ such 

that 

𝑓  𝜔, 𝛼 𝜔, 𝐺 + asin 𝜔𝑝𝑡   = 0 If and only if  𝜔 = 𝑙(𝐺). 

Assumption 2: For each 𝐺 ∈ ℝ, the equilibrium 𝜔 = 𝑙(𝐺) of 

the system is locally exponentially stable. 

The function composition 𝐶𝑝𝑓 =  𝑕𝑜𝑙  𝐺 = 𝑕(𝑙 𝐺 ) 

represents the steady state static map of the system, which 

leads to the third assumption. 

Assumption 3: There exists  𝐺∗ ∈ ℝ such that 

𝜕

𝜕𝐺
 𝑕𝑜𝑙  𝐺∗ = 0 

𝜕2

𝜕𝐺2
 𝑕𝑜𝑙  𝐺∗ < 0 

Assumption 3 is the condition required for the static map 

𝐶𝑝𝑓 =  𝑕𝑜𝑙  𝐺  to have a maximum at 𝐺∗. 

If we use a slow perturbation signal asin 𝜔𝑝𝑡 , then the plant 

appears as static map 𝐶𝑝𝑓 =  𝑕𝑜𝑙  𝐺  as shown in Figure 9 

and its dynamics do not interfere with the peak seeking 

scheme. 

 

Figure 9: A plant as static map when the perturbation is slow 

We can now combine and rewrite the equations of the system 

with the equations of the proposed controller as given below: 

𝑑𝜔

𝑑𝑡
= 𝑓(𝜔, 𝛼(𝜔, 𝐺 +  asin⁡(𝜔𝑝𝑡)))                                                                                                                                   (25a) 

𝑑𝐺 

𝑑𝑡
= 𝑘𝜉                                                                                                                                   (25b) 

𝑑𝜉

𝑑𝑡
= −𝜔𝑙𝜉 + 𝜔𝑙(𝐶𝑝𝑓 − 𝜂)bsin⁡(𝜔𝑝𝑡)                                                                                                                                   (25c) 

𝑑𝜂

𝑑𝑡
= −𝜔𝑕𝜂 + 𝜔𝑕𝐶𝑝𝑓                                                                                                                                    (25d) 

Where,  𝑘, 𝑎, 𝑏, 𝜔𝑝 , 𝜔𝑙 , 𝜔𝑕  are tuning parameters. To 

simplify the theoretical analysis let assume that a and b are 

equal, but practically they may have different values, then the 

parametric space will be  𝑘, 𝑎2 , 𝜔𝑝 , 𝜔𝑙 , 𝜔𝑕 . 

The parameters of the controller will be selected as [19] 

 𝜔𝑕 = 𝜔𝑝𝜔𝐻 = 𝜔𝑝𝛿𝜔𝐻
′ = 𝑂(𝜔𝑝𝛿)                                                                                                                                   (26a) 

 𝜔𝑙 = 𝜔𝑝𝜔𝐿 = 𝜔𝑝𝛿𝜔𝐿
′ = 𝑂(𝜔𝑝𝛿)                                                                                                                                   (26b) 

 𝑘 = 𝜔𝑝𝐾 = 𝜔𝑝𝛿𝐾
′ = 𝑂(𝜔𝑝𝛿)                                                                                                                                   (26c) 

Where 𝜔𝑝  and 𝛿 are small positive constants and 𝜔𝐻
′ , 𝜔𝐿

′  and 

𝐾 ′  are 𝑂(1) positive constants. 

Now let us introduce the new coordinates that shifts the 

equilibrium or the optimal operating point to the origin: 

 𝐺 = 𝐺 − 𝐺∗ ⇒
𝑑𝐺 

𝑑𝑡
=

𝑑𝐺 

𝑑𝑡
                                                                                                                                    (27) 

 𝜂 = 𝜂 − 𝑕𝑜𝑙 𝐺∗ ⇒
𝑑𝜂 

𝑑𝑡
=

𝑑𝜂

𝑑𝑡
                                                                                                                                    (28) 

By using (26) and (27) and time scale, 𝜏 = 𝜔𝑝𝑡 the system 

from (25) can be rewritten as: 

𝜔𝑝
𝑑𝜔

𝑑𝜏
= 𝑓(𝜔, 𝛼(𝜔, 𝐺 + 𝐺∗ +  asin⁡𝜏))                                                                                                                                   (29a) 

𝑑

𝑑𝜏
 
𝐺 

𝜉
𝜂 
 =

𝛿  

𝐾 ′𝜉

−𝜔𝐿
′ 𝜉 + 𝜔𝐿

′ (𝑕(𝜔) − 𝑕𝑜𝑙 𝐺∗ − 𝜂 )asin⁡𝜏

−𝜔𝐻
′ 𝜂 + 𝜔𝐻

′ (𝑕 𝜔 − 𝑕𝑜𝑙 𝐺∗ )

                                                                                                                                    

 

 

 

 

(29b) 

Where (𝑎2, 𝛿, 𝜔𝑝 ) are tuning parameters. 

To show the stability of the above system in (29a) and (29b) 

steps similar to that of [19] are used. First the overall system 

is divided in to two time scales, the fast dynamics as in (29a) 

and the slow dynamics as in (29b). The fast dynamics will be 

frozen around the equilibrium point and its state variable is 

treated as constant in the slow dynamics. Since the slow 

dynamics have periodic behavior an averaging technique, 

which is the standard approach for analyzing periodic 

systems, is used to investigate its stability properties. 

Freeze 𝜔 from (29a) to its equilibrium value, such that 

 𝜔 = 𝑙(𝐺∗ + 𝐺 +  asin⁡𝜏)                                                                                                                                  (30) 

Substitute (30) into (29b) to obtain the following reduced 

system: 

𝑑

𝑑𝜏
 
𝐺 𝑟
𝜉𝑟
𝜂 𝑟

 =

𝛿  

𝐾 ′𝜉

−𝜔𝐿
′ 𝜉𝑟 + 𝜔𝐿

′ (𝑣(𝐺 𝑟 + asin⁡𝜏) − 𝜂 )asin⁡𝜏

−𝜔𝐻
′ 𝜂 + 𝜔𝐻

′ (𝑣(𝐺 𝑟 + asin⁡𝜏))

                                                                                                                                    

 

 

 

 

(31) 

Where, 𝑣 𝐺 𝑟 + asin 𝜏 = 𝑕𝑜𝑙 𝐺∗ + 𝐺 + asin 𝜏 − 𝑕𝑜𝑙(𝐺∗)  
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In view of assumption 3 the following expressions about 

𝑣 𝐺 𝑟 + asin 𝜏  are true: 

𝑣 0 = 𝑕𝑜𝑙 𝐺∗ + 0 − 𝑕𝑜𝑙 𝐺∗ = 0                                                                                                                                   (32a) 

𝑣′(0) = (𝑕𝑜𝑙)′ 𝐺∗ = 0                                                                                                                                    (32b) 

𝑣′′  0 =  𝑕𝑜𝑙 ′′  𝐺∗ < 0                                                                                                                                   (32c) 

System in (31) is in the form to which averaging method is 

applicable. According to average model definition (from 

equation (10.25) of [20]), we can have the following average 

model of our system from (29): 

 
𝑑

𝑑𝜏
 
𝐺 𝑟

𝑎

𝜉𝑟
𝑎

𝜂 𝑟
𝑎

 =

𝛿

 
 
 
 
 

𝐾 ′𝜉𝑟
𝑎

−𝜔𝐿
′ 𝜉𝑟

𝑎 +
𝜔𝐿

′

2π
a  (𝑣(𝐺 𝑟

𝑎 + asin⁡𝛼))sin⁡𝛼𝑑𝛼
2𝜋

0

−𝜔𝐻
′ 𝜂 𝑟

𝑎 +
𝜔𝐻

′

2𝜋
 (𝑣(𝐺 𝑟

𝑎 + asin⁡𝛼))𝑑𝛼
2𝜋

0  
 
 
 
 

                                                                                                                                   

 

 

 

 

(33) 

First let us determine the equilibrium point (𝐺 𝑟
𝑎,𝑒 , 𝜉𝑟

𝑎,𝑒 , 𝜂 𝑟
𝑎,𝑒

) of 

the average model in (33) which satisfies: 

 𝜉𝑟
𝑎,𝑒 = 0                                                                                                                                   (34a) 

  (𝑣(𝐺 𝑟
𝑎 ,𝑒 + asin⁡𝛼))sin⁡𝛼𝑑𝛼

2𝜋

0
= 0                                                                                                                                   (34b) 

 𝜂 𝑟
𝑎,𝑒 =

1

2𝜋
  𝑣 𝐺 𝑟

𝑎 ,𝑒 + asin 𝛼  𝑑𝛼
2𝜋

0
                                                                                                                                   

(34c) 

Let us postulate 𝐺 𝑟
𝑎,𝑒

 in the following form [19] 

 𝐺 𝑟
𝑎,𝑒 = 𝑏1𝑎 + 𝑏2𝑎

2 + 𝑂(𝑎3)                                                                                                                                    (35) 

After applying Taylor series expansion, integrating and 

equating like powers of  we will obtain 𝑏1 = 0 and 𝑏2 =

−
𝑣′′′  0 

8𝑣′′  0 
, which implies that: 

 𝐺 𝑟
𝑎,𝑒 = −

𝑣′′′  0 

8𝑣′′  0 
𝑎2 + 𝑂(𝑎3)                                                                                                                                   (36) 

Following similar procedures for 𝜂 𝑟
𝑎,𝑒

 we will obtain 𝑏1 =

0 and 𝑏2 =
𝑣′′  0 

4
, which implies that: 

 𝜂 𝑟
𝑎,𝑒 =

𝑣′′  0 

4
𝑎2 + 𝑂(𝑎3)                                                                                                                                   (37) 

Then the required equilibrium point of the average model will 

be:  

 

 

𝐺 𝑟
𝑎,𝑒

𝜉𝑟
𝑎,𝑒

𝜂 𝑟
𝑎,𝑒

 =

 
 
 
 −

𝑣′′′  0 

8𝑣′′  0 
𝑎2 + 𝑂(𝑎3)

0
𝑣′′  0 

4
𝑎2 + 𝑂(𝑎3)  

 
 
 

                                                                                                                                   

 

(38) 

The Jacobian of (33) at the equilibrium point (𝐺 𝑟
𝑎,𝑒 , 𝜉𝑟

𝑎,𝑒 , 𝜂 𝑟
𝑎,𝑒

) 

is: 

𝐽𝑟
𝑎,𝑒 =

𝛿

 
 
 
 

0   𝐾 ′ 0
𝜔𝐿

′

2π
a  (𝑣′(𝐺 𝑟

𝑎,𝑒 + asin⁡𝛼))sin⁡𝛼𝑑𝛼
2𝜋

0
−𝜔𝐿

′ 0

𝜔𝐻
′

2𝜋
  𝑣′ 𝐺 𝑟

𝑎 ,𝑒 + asin 𝛼  𝑑𝛼
2𝜋

0
0 −𝜔𝐻

′
 
 
 
 

                                                                                                                                   

 

 

(39) 

After a little simplification we will obtain the following 

characteristic polynomial of 𝐽𝑟
𝑎,𝑒

: 

𝑐𝑕𝑎𝑟(𝐽𝑟
𝑎,𝑒) =

 𝜆𝑎 + 𝛿𝜔𝐻
′  (𝜆𝑎

2 + 𝜆𝑎𝛿𝜔𝐿
′ − 𝛿2𝐾 ′ 𝜔𝐿

′

2
a2𝑣′′  0 +

𝑂 𝛿2𝑎3 )                                                                                                                                   

 

(40) 

Since we know from (32c) that 𝑣′′  0 < 0,  𝐽𝑟
𝑎,𝑒

 is Hurwitz for 

sufficiently small a (i.e. all roots of the characteristic 

polynomial of 𝐽𝑟
𝑎,𝑒

 have negative real parts) which indicates 

that the equilibrium of average model is exponentially stable 

for sufficiently small a. Then, according to averaging theorem 

(Theorem 8.3 of [20]) we have that the solutions of the 

original system (i.e. 𝐺 𝑟 , 𝜉𝑟 , 𝜂 𝑟 ) and in particular their 𝐺 𝑟  

components, from (31), converges to an 𝑂(𝛿 + 𝑎2) 

neighborhood of the origin. 

From this stability analysis a convergence error of 𝐺 𝑟
𝑎,𝑒 =

−
𝑣′′′  0 

8𝑣′′  0 
𝑎2 + 𝑂(𝑎3) is obtained. But these presents a 

drawback when a large perturbation signal is used. In [21] the 

modulation signal 𝑔 𝜔𝑝𝑡  other than the traditional 𝑠𝑖𝑛(𝜔𝑝𝑡) 

is suggested to eliminate or reduce the convergence error 

without affecting the above stability condition. Note that the 

modified 𝑔 𝜔𝑝𝑡  replaces the modulation signal while the 

perturbation signal is still 𝑎𝑠𝑖𝑛(𝜔𝑝𝑡).  The modulation signal 

is modified as in the following proposition. 

Under Assumption 3, the integration  (𝑣(𝐺 𝑟
𝑎,𝑒 +

2𝜋

0

asin⁡𝛼))𝑔𝛼𝑑𝛼 is equal to zero at 𝐺𝑟𝑎,𝑒=0 if the modulation 

signal 𝑔 𝛼  is chosen as a sum of sinusoids. 

𝑔 𝛼 =  (2𝑚 + 1)𝑠𝑖𝑛((2𝑚 + 1)𝛼)𝑚
𝑚=0                                                                                                                                    (53) 

Where, 𝑚 = 0, 1, 2, … . , 𝑚 And 𝛼 = 𝜔𝑝𝑡 

𝑚 is selected small enough so that the dynamics of the 

controller will not interfere to the plant dynamics (i.e. the 

dynamics of the plant is fast compared with the controller). 

IV. RESULTS AND DISCUSSION 

The simulation is compiled for the Sany wind turbine 

(SE7715) which can extract a maximum electrical power of 

1.5MW at rated wind speed of 12m/s. The first three terms of 

𝑔 𝜔𝑝𝑡  is taken as a modulation signal (i.e. 𝑚 = 3). The 

remaining simulation parameters and their sample values are 

given in Table I. 

 Figure 10 and Figure 11 shows the simulation result of the 

rotor speed and the extracted power at 7m/s wind speed for 

both quadratic and adaptive (extremum seeking) controllers 

respectively. From Figure 10 and Figure 11 it is observed that 
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both controllers works similar at a theoretical or normal 

condition.  However, small rise time and higher overshoot 

from the rotor speed and power extracted plot may happen 

due to the initial condition from the rotor speed plot in the 

case of the the extremum seeking controller. They make the 

rotor speed to increase from the initial value of 0.8rad/sec to 

1.148rad/sec and results 477.5KW mechanical power to be 

extracted at wind speed of 7m/s. This result shows that the 

quadratic controller can give a desired result as that of the 

extremum seeking controller if  𝐶𝑝𝑚𝑎𝑥  and  𝜆∗ are accurately 

known, but this is practically impossible because of the 

presence of aerodynamic uncertainties in the real turbine. 

Note that the choice of the value for the constant k depends on 

wind speed as well as on filter frequencies. 

The wind turbine behavior change can be represented by its 

power coefficient change. For instance, if the  𝐶𝑝𝑚𝑎𝑥  is 

changed from its optimal value of 0.4806 to 0.3845 for the 

Sany wind turbine as a result of turbine behavior change, the 

simulation results of rotor speed and the corresponding power 

extracted by extremum seeking and quadratic controllers will 

be as shown in Figure 12 and 13 respectively.  As it is 

observed from Figure 12 and 13, when a change in the turbine 

behavior occurs the rotor speed of the turbine decreases from 

1.148rad/s to 1.06rad/s and stays constant in the case of 

quadratic controllers. Whereas in the case of extremum 

seeking controller, the rotor speed is rising to retain its 

original speed value immediately after the change in the 

turbine‟s behavior is detected. Similarly, the power captured 

by the turbine changes from 477.5KW to 375.6KW if 

quadratic controller is used and it is changed from 477.5KW 

to 382KW if extremum seeking controller is used. This result 

shows that there is a power loss of 6.4kw if quadratic 

controller is used than extremum seeking controller.  

Now let us see how the extremum seeking controller performs 

the gain adaptation law at normal condition as well as at the 

occurrence the turbine behavior change. The curves of the 

normalized adaptive gain (i.e. 
𝐺

𝐺∗) at a normal condition and 

during the turbine behavior change at wind speed of 7m/s are 

shown in Figure 14. 

As it is shown from Figure 14 (a), at the normal condition the 

adaptive gain starts from its specified initial value (zero in this 

case) and is converging to its optimal value. However, Figure 

14 (b) shows that when a change in the turbine behavior 

occurs the extremum seeking controller makes its gain 𝐺 to 

adapt towards its new optimal value online while the system is 

operating, by which means it maximizes the power captured 

by the wind turbine. 

The change in the weather condition may result for wind 

speed change due to wind gusts. The wind speed profile and 

the rotor speed of the turbine for both the existing quadratic 

and the proposed controllers, when a particular type of wind 

speed changes occurred due to wind gusts, are shown from 

Figure 15 and Figure 16 respectively. 

As it is indicated from Figure 16 both controllers are capable 

of adjusting the rotational speed according to the wind speed 

variation to maintain the turbine‟s optimal operating point. 

This shows the robustness of the proposed controller for 

weather condition change.  

Table I: Simulation Parameters  

Description Value 

Cut-in wind speed 3.5m/s 

Cut-out wind speed 25m/s 

Rotor diameter 77.6m 

Rated rotation speed 1.99rad/s 

Rotor inertia (𝐽) 2.5 ∗ 10^6 𝑘𝑔. 𝑚2 

Air density (𝜌) 1.225 𝑘𝑔/𝑚3 

Optimal adaptation gain (𝐺 ) 315654.94 

Initial rotor speed (𝜔𝑖𝑛𝑖𝑡 ) 0.8𝑟𝑎𝑑/𝑠𝑒𝑐 

Perturbation amplitude (𝑎) 0.01 

Perturbation frequency (𝜔𝑝) 1𝑟𝑎𝑑/𝑠𝑒𝑐 

Integration gain (𝐾) 0.79 

HPF cut-off frequency (𝜔𝑕) 0.6𝑟𝑎𝑑/𝑠𝑒𝑐 

LPF cut-off frequency (𝜔𝑙) 0.8𝑟𝑎𝑑/𝑠𝑒𝑐 

 

Figure 10: Rotor speed by the extremum seeking (black) and quadratic (blue) 

controllers 

 

Figure 11: Power extracted by extremum seeking (black) and quadratic (blue) 

controllers 
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Figure 12: Rotor speed by extremum seeking (black) and quadratic (blue) 

controllers during turbine behavior change at 7m/s wind speed 

 

Figure 13: power extracted by extremum seeking (black) and quadratic (blue) 
controllers during turbine behavior change at 7m/s wind speed 

 

(a) Normalized adaptive gain at a normal condition 

 

(b) Normalized adaptive gain during turbine behavior change 

Figure 14: Normalized adaptive gain 

 

Figure 15: Wind speed profile for a change in weather condition 

 

Figure 16: Rotor speed by the existing quadratic and extremum seeking 
controllers 

V. CONCLUSION 

In this paper an adaptive controller (extremum seeking 

controller) to optimize power captured of variable speed wind 

turbine is designed, analyzed and tested by simulation. It is 
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aimed to diminish energy loss in region 2 operation of the 

turbine due to the uncertainty of the aerodynamic parameters. 

As we observed from the simulation results the existing 

quadratic controller will function well only if the aerodynamic 

property of the wind turbine is fixed or not changing forever. 

However, this is unexpected practically because, the turbine‟s 

behavior is changing from time to time as result of bug build 

up and blade erosion and the inaccuracy present in the 

modeling of wind turbine. Because of this uncertainty sub-

optimal energy capture will happen when the quadratic 

controllers are employed. However, we have seen that the 

Extremum seeking controller is able to reduce the problem 

due to the uncertain turbine behavior. Generally, the 

percentage improvements achieved by the Extremum seeking 

controller over the existing quadratic controller during the 

turbine behavior changes are 8.3% and 1.7% for the rotor 

speed and the extracted power respectively. 
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