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Abstract: The optimum harvest strategy for forestry biomass 

influenced by a toxicant is suggested and studied by using a non-

linear mathematical model. The nature and uniqueness of 

equilibrium, conditions for existence of their local and global 

equilibrium points, are all established. Both equilibrium levels of 

biomass and total sustainable yield decrease as toxicant 

concentrations rise, as per the analysis. The optimum harvest 

approach is frequently discussed using Pontryagin's Maximum 

principle. Numerical analysis is implemented to validate the 

mathematical findings. 
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I. INTRODUCTION 

he toxicant and contaminants releasedfrom various 

industries, vehicles and other man-made projects 

leavedeleterious effect on biological and forestry biomass. 

Some studies on the impact of toxicants on biological 

populations have been conducted in recent years. In particular, 

(Hallam et al., 1984) in a series of their papers studied 

qualitative approach oftoxicants on populations. They 

assumed growth rate density of singlespecies population as 

decreasing function of concentration oftoxicant but the 

corresponding carrying capacity being unaffected bythe 

presence of toxicant in environment. Taking this 

inconsideration, (Freedman and Shukla, 1991) studied the 

effect oftoxicant on a single species and on a predator-prey 

system by takinginto account the introduction of toxicant from 

an external source. Further (Shukla et al., 2009) studied the 

effects of toxicants on resource dependent population where 

they considered toxicant emitted from the external sources 

and by its precursor. The effect of environmental toxicant on 

resource biomass has been studied by (Gakkhar and Sahani, 

2009) and (Naresh et al., 2014), and it was found that growth 

rate of plants was affected because of uptake of pollutants 

which lead to a decrease in resource biomass. (Shukla and 

Dubey, 1997) in their paper discussed the combined effect of 

population and pollution on depletion of forestry biomass. 

(Lata. K et al., 2016) studied the effect of industrialization on 

forestry resources in which they assess the effect of wood and 

non-wood based industries on the depletion of forestry 

biomass and it was found that the level of pollutants because 

of wood and non-wood based industries increases the 

metabolism of forestry resources gets affected because uptake 

of these pollutants by the forestryresources. Depletion and 

conservation of Forestry biomass in presence of 

industrialization was studied by (Mishra & Lata, 2015) by 

considering that due to forestry biomass industries migrate 

and due to availability of forestry biomass their growth 

increases. (Agarwal M. et al., 2011) studied the effect of 

toxicant on resource dependent competition model where 

toxicant emitted from external sources and formed by 

precursors of competing species.  But the adverse effects of 

toxicant onharvesting of forestry biomass and that on species 

are yet to be studied.In these days, considerable interest has 

been taken in finding outthe optimal harvest policy of forestry 

biomass and species. Thebasic idea related to the field of Bio-

economic modeling wasintroduced by (Clark, 1976, 1979, 

1985). He discussed several aspects ofharvesting of renewable 

resources by examples from fishery. But itwas clearly 

mentioned in books and other references that sametechniques 

can be used for optimal management of 

otherrenewableresources (e.g. other species, forestry 

biomass). (Bhattacharya & Begum, 1996) discussed the 

feasible bioeconomic equilibrium points for alogistic growth 

model of two ecologically independent species, twocompeting 

species and Lotka-Volterra model of one prey and one 

predator. (Pradhan & Chaudhuri, 1999) investigated a 

dynamic model oftwo species fishery with tax as control 

variable and obtained itsoptimal policy. Later, they 

investigated the harvesting of a schooling fish species. (Dubey 

et al., 2002) in their paper discussed the dynamics offish 

population partially dependent on a logistically 

growingresource with functional response and the harvest 

termwas assumed tobe proportional to both stock level and 

effort.Dubey and Patra (2013) studied a mathematical model 

for the optimization and utilization of renewable resource by 

population.    Keeping all these in mind, a model is proposed 

to study the harvesting of toxicantbiomass.  A mathematical 

model is developed by means of a system 

T 
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ofordinarydifferential equations. Stability analysis for 

differentequilibrium points, local and global stability of 

equilibriums andalso region of attraction are discussed. MSY 

and optimal policy toharvest biomass are obtained and in last, 

results are discussed withsome numerical analysis. 

II. MATHEMATICAL MODEL 

A forestry biomass is considered which is affected by a 

toxicant present in the environment  as well as by that present 

in itself and subjected to harvesting. The forestry biomass 

concentration is denoted by B(t), T(t) and U(t) are the 

concentrations of toxicant present in environment and in the 

biomass (Dubey et al., 2002) respectively. E(t) denotes the 

effort applied to harvest biomass. We make some assumptions 

in the modelling of differential equations which govern the 

system.These are given as follows : 

H1 : Carrying capacity of forestry biomass is adversely 

affected by the presence of toxins in the environment i.e. if 

K(T) represents toxicant dependent carrying capacity, 

thenK(0) = K0> 0 ,K'(T) < 0, T  0. aT,  such that K(T) = 

0. 

H2 : Growth rate function of forestry biomass decreases with 

increase in toxicant concentration in biomass i.e., if r(U) is 

growth rate function, thenr(0) = r0> 0,r'(U) < 0 U  0 and 

aU,  such that r(U) = 0. 

H3 : Forestry biomass is harvested in direct proportion to the 

product of its concentration and applied effort with constant 

catchability coefficient q (i.e. h = qBE), where h(t) = total 

harvest at time t.  

H4 : Forestry biomass is subjected to dynamic harvesting with 

a tax > 0 which is imposed by regulatory agency in order to 

maintain desired level of forestry biomass. 

Toxicant in the environment is introduced beyond its 

initial concentration with positive constant rate Q0 and washed 

out with constant rate 0. One example of such toxicant is 

Chomney exhaust into the atmosphere that affects fishery. 

Another is of dumping of heavy metal pollutant in a lake or 

ground that effects marine ecosystem or forestry.  is the 

depletion rate coefficient of toxicant in the environment due to 

its intake by biomass. The toxicantconcentration in biomass 

may be depleted from environment with constant rate 0 and 

may also be removed from biomass in proportion to their 

concentrations with proportionality constant . The term 

‘BU’ corresponds to decrease in toxicant concentration in 

biomass due to decay of toxicated biomass. This decayed 

biomass is now a part of environment which may in turn 

pollute soil or water. So a fraction of BU (i.e. BU) 

contributes in toxicant contribution in the environment. 

Above assumptions and considerations lead to the following 

system of differential equations : 
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B(0)  0,    T(0)  0,   U(0)  0,   E(0)  0,   0  1. 

Here, p is the fixed price per unit of forestry biomass and c is 

the cost of harvesting per unit effort applied. The constant 0 

is called stiffness parameter measuring the strength of reaction 

of effort to the perceived rent. 

III. EXISTENCE AND STABILITY ANALYSIS OF 

EQUILIBRIUM POINTS 
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Equation 2(a) represents T
~

 as an increasing function of U
~

from zero and 2(b) represents T
~

as decreasing function of U
~

from
𝑄0

𝛿0
to zero.Hence, two isoclines given by 2(a) and 2(b) 

intersect at unique point )U
~

,T
~

( , provided TT
~
  and 

UU
~
 , so P2 exists. 

P*(B*,T*,U*,E*) is given by  equations 
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Again from 3(c), T* is increasing function of U* from zero 

and equation 3(d) shows that T* is decreasing function of U* 

from 
𝑄0

𝛿0
to zero. So sections of the two hyper–cylinders given 

by 3(c)) and 3(d) in the T – U plane must intersect at unique 

point (T*, U*) provided T* <T and U* <U. 

For the existence of P*, positivety of B* and E* implies 

p >, 

 

 

 

 

Above equation gives the uppper bound for the tax which is 

also affected by concentration of toxicant in the environment 

and in biomass. Also, it is clear, that increase in concentration 

of toxicant in environment or in biomass decreases the 

equilibrium value of the harvesting effort which may even be 

zero when 
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In that case, equilibrium point P2 exists and we can not 

harvest biomass. In order to determine stability nature of 

equilibrium points, the corresponding variational matrices are 

considered. The characteristic matrix of P* can be written as  

 

 

 

 

 

 

 

 

 

From variational matrix analysis, it is clear that P1 is a saddle 

point with one dimensional unstable and three-dimensional 

stable manifold. P2 is a saddle point with one dimensional 

unstable and three-dimensional stable manifold if

q)p/(cB
~

  and P2 is locally asymptotically stable if

q)p/(cB
~

 . Global stability in this case can be 

analyzed in a similar manner as was done in Freedman and 

Shukla [8]. When r(U*) = r0B*/K(T*) i.e. E* = 0, then P* is a 

saddle point with one dimensional unstable and three 

dimensional stable manifold if B* > c/(p – )q. Similarly 

when E* = 0, P* is locally asymptotically stable if B* < c/(p – 

)q. When E*  0, the characteristic equation of P* can be 

written as  


4
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2
} 

Clearly b1> 0 and b4> 0. Now, if b2> 0, b3> 0 and 

b1b2b3> b1
2
b4 + b3

2
 then by Routh Hurwitz criterion, all roots 

of equation (4) will have negative real part. So, under these 

conditions, P* is locally asymptotically stable point. 

Now, before proving theorem which gives conditions 

for global stability, we require a lemma which establishes a 

region of attraction for the system (1). 

Lemma :The set 

 = {(B, T, U, E) : 0  B  K0,0  T + U  0 0 (p – ) B + 

E  A} 
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solutions of system (1) in the interior of the positive 

octant,Where  

 = min(0, 1), 

Theorem1:Let r(U), K(T) satisfy the conditions 
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positive constants 1, 2, Kc and K0 then if following 

inequalities hold 
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Then P* is globally asymptotically stable w.r.t. all 

solutions initiating in the positive octant. 

Proof. Let us consider positive definite Liapunov function as  
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Then conditions for 𝑉  to be negative definite are that 

following inequalities hold 

 b12
2
< b11b22                                                          5 (a) 

b13
2
< b11b33   5(b) 

               b23
2
< b22b33   5(c) 

It is clear that  (4(a))  (5(a)),(4(b))  (5(b)) and 

(4(c))  (5(c))So, if inequalities given in theorem 

hold, then 𝑉 is negative definite function. 

Let us consider subset S of  as 

 S  {(B, T, U, E)   : V = 0} 

the largest invariant set in S is {(B, T, U, E)   : B = B*, U 

= U*, T = T*, E = E*}. So by LaSalle’s invariance principle, 

P* is globally asymptotically stable equilobrium point. 

IV. MAXIMUM SUSTAINABLE YIELD 

The Maximum Sustainable Yield (MSY) of forestry 

biomass may be defined as the maximum rate at which it can 

be harvested even after maintaining biomass concentration at 

constant level and any larger harvest rate will lead to the 

depletion of biomass eventually to zero.The sustainable yield 

is given by 

 

 

 

 

Also,  

Hence,                                            . 

 

 

It is clear that h
0

MSY> hMSY, so MSY also decreases 

with increase in toxicant concentration level and it is 

maximum in the absence of toxicant. 

V. OPTIMAL HARVESTING POLICY 

In this section, the optimal harvesting policy is 

discussed which plans to maximize the total discounted net 

revenue from the harvesting using taxation as control 

instrument.The net economic revenue to society, 
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In order to obtain optimal equilibrium, we use 

relations given by eq.(8) and eq.(9)with interior equilibrium 
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Also, 

𝜆1 =
𝐶1𝑒

−𝑠𝑡

𝐶1+𝑠
                                                                    (12) 

Where,  

𝐶1 =
𝑟0𝐵∗

𝐾(𝑇∗)
, 𝐶2 =

𝐵2

𝐵1+𝑠
 𝛼𝑇∗ − 𝛾𝑈∗ −

𝐴2

𝐴1+𝑠
 𝛼𝑇∗ −

𝜋𝛾𝑈∗+𝑝𝑞𝐸∗. 

Equations  (9) and (12) gives, 

(13) 

 

The above equation gives the optimal equilibrium level of 

forestry biomass along with toxicant concentration in 

environment and in biomass i.e. 

B* = Bs   ,  T* = Ts    ,   U = Us 

Then, optimal levels of effort and tax are given as, 

 

 

From equation (13) 

 

 

This shows that net economic revenue to society 

vanishes when discount rate is infinite and hence the 

harvesting of biomass remains closed.Also, zero discount rate 

gives the maximum value of net revenue to the society for 

definite effort. 

VI. NUMERICAL ANALYSIS 

Let us choose most general form of growth rate and carrying 

capacity of biomass as, 

r(U) = r0 – r01U        ,        K(T) = K0 – K01T 

Takingr0 = 15,  = 0.6, s = 1, K0 = 20, Q0 = 35, r01 = .02, q = 

.1, K01 = .02, p = 25, 0 = 10, c = 8, 1 = 12, 0 = 1, 

 = 0.5 and   = .05 

With different values of tax , we obtain equilibrium points as 

 B* T* U* E* 

5 4.0000 2.8271 0.5560 119.8038 

10 5.3333 2.6586 0.6934 109.7597 

15 8.0000 2.3773 0.9203 89.6730 

20 16.0000 1.8131 1.3606 29.5100 

22 19.9276 1.6278 1. 4981 0.0000 
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It can be verified that conditions for local stability are 

satisfied in each case. Also by choosing 1 = 2 = .02  and Kc 

= 2 from theorem (3.1), it can be checked that inequalities for 

global stability are satisfied so P* is stable equilibrium point 

in each case. There exist a value of tax𝜏 = 22for which 

E*=0, after that harvesting remains closed and biomass attains 

its maximum carrying capacity. 

Figures have been plotted between dependent 

variables and time for different parameter values to show 

changes occurring in parameters with time under different 

conditions. The results of numerical simulation are 

displayedgraphically. From figure it is noted for given initial 

values the forestry biomass concentration, toxicants present in 

environment as well as biomass and effort applied to harvest 

biomass tend to their corresponding value of equilibrium 

point𝑃∗and hence coexist in the form of steady state assuring 

global stability of𝑃∗. 

In Figure 1, we have considered the four different initial 

values of the forestry biomass concentration and toxicant 

concentration present in biomass . All trajectories starting 

from different initial values approach to(𝐵∗, 𝑈∗). This point 

is independent of the initial status. This shows that (𝐵∗, 𝑈∗) 

is globally asymptotically stable in B U-plane. 

In Figure 2, we have considered the four different 

initial values of the forestry biomass concentration and 

toxicant concentration present in environment. All trajectories 

starting from different initial values approach to (𝑇∗, 𝑈∗). 

This point is independent of the initial status. This shows that 

(𝑇∗, 𝑈∗) is globally asymptotically stable in  T U-plane. 

              In Figure 3, we have considered the four different 

initial values of the toxicant present in biomass and effort 

applied to harvest biomass. All trajectories starting from 

different initial values approach to (𝑈∗, 𝐸∗). This point is 

independent of the initial status. This shows that (𝑈∗, 𝐸∗) is 

globally asymptotically stable in U E-plane. 

         From figure 4-7, we can depict that Forestry biomass 

and toxicant present in biomass increases and toxicant present 

in environment decreases  with the increase in the value of tax 

𝜏, and finally attain their equilibrium levels. This is obvious 

as the tax increases harvesting effort for biomass decreases  

and becomes closed for 𝜏 = 22. 

 

Figure 1. Global stability in B and U 

 

Figure 2. Global stability in T and U 

 

Figure 3. Global stability in U and E 
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Figure4.Variation of B with time for different values of taxes. 

 

Figure 5. Variation of T with time for different values of taxes. 

 

Figure 6.Variation of U with time for different values of taxes. 

 

Figure 7.Variation of E with time for different values of taxes. 

VII. CONCLUSION 

In the present paper, a mathematical model to study the 

optimal harvest policy for toxicant effected forestry bionass 

has been discussed. Constant introduction of toxicant into the 

environment and dynamic harvesting effort of biomass with 

tax as control instrument have been taken. 

The existence and uniqueness of equilibrium points, their 

local and global stability have been discussed. It has been 

shown that system is uniformly bounded, which implies that 

system is biologically well behaved. In last MSY and optimal 

harvest policy for forestry biomass have been obtained. The 

following results are clear from the discussion : 

i. Increase in toxicant concentration, lowers the 

equilibrium level of the system. 

ii. It has been noted that if toxicant level is sufficiently 

high, then biomass can not reproduce or grow and 

infact it will extinct. 

iii. Applied harvesting effort and upper bound for tax are 

also affected by toxicant concentration. Even if 

concentration of toxicant increases without any 

control, harvesting must be stopped. 

iv. The value of maximum yield for forestry biomass 

can be increased by lowering toxicant concentration. 

v. If price per unit of biomass increases faster than the 

cost involved in harvesting, forestry biomass settles 

down to lower equilibrium level. 

vi. If annual rate of discount is sufficiently high, then 

net revenue to the society vanishes and zero discount 

rate gives the maximum net revenue to the society 

for definite effort. 

Introduction of periodic influx and effort dependent toxicant 

can be discussed in similar pattern. This model can be 

generalized for two or more interacting species harvested in a 

toxicated environment with mode of interaction being 

competition, cooperation or predation. This is left for future 

research. 
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Appendix: 

Proof of Lemma:From eq.(1) 

 

 

 

 

 B  K0 as t . 

Again fron eq.(1) 

 

 

 Q0 – (T + U),  = min (0, 1). 

𝑈 + 𝑇 ≤
𝑄0

𝛿
. It is positive constant 𝑒−𝛿𝑡   𝑎𝑠 𝑡 → ∞, 

𝑈(𝑡) + 𝑇(𝑡) ≤
𝑄0

𝛿
. 

Also taking > 0 

 

 

On integrating and taking limit t , we get, 

 

 

Hence lemma follows. 
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Choosing <0C, since r(0) = r0, K(0) = K0 and r'(U) < 0, 

K'(T) < 0.  
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