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Abstract: Many practical issues in science and engineering are 

formulated by ordinary differential equations (ODE) that 

require their own numerical solution. There are a variety of 

numerical approaches, e.g. the Euler method, the modified Euler 

method, the Heun's method, the Adam-Bashforth method, and so 

on, that exist in the context of numerical analysis. Amongst them, 

the classical fourth order Runge-Kutta (RK4) technique is the 

most reliable and most used. The objective of this paper is 

twofold. The first goal is to derive the value of different 

parameters in the formulation of the fourth order Runge-Kutta 

method, and the second goal is to give details of the geometrical 

interpretation of this method, principally explaining the role of 

the increment parameters ik  in the formula. The whole 

discussion will facilitate perception of the key mechanism of the 

Runge-Kutta method.  

Keywords: Runge-Kutta method, Euler method, Heun’s method, 

Increment parameter. 

I. INTRODUCTION: 

round 1900, two German mathematicians, Curl Runge 

and Wilhelm Kutta, devised the Runge-Kutta techniques 

in numerical analysis [1].  In 1895, C. Runge presented a 

work that was a more complex development and was an 

extension of the Euler method's approximation. To determine 

the numerical solution of differential equations, various order 

Runge-Kutta techniques have been widely utilized [2-3]. To 

solve second-order fuzzy differential equations, a novel 

version of the enhanced Runge-Kutta Nystrom technique is 

used [4]. For the numerical solution of n-th order fuzzy 

differential equations based on the Seikkala derivative with 

initial value issue [5-8], the Runge-Kutta technique of order 

five is utilized. Also, the fourth and fifth-order Runge-Kutta 

techniques [9-11] are used to the specific Lorenz equation. In 

[12-14], implicit and multistep Runge-Kutta techniques are 

investigated. Euler and Coriolis [15-16] explore the 

fundamental concepts of differential equation theory and their 

numerical solution. In the articles of Runge [17], Heun [18], 

and Nystrom [19], the early works of the Runge-Kutta 

technique are examined. Adams and Bashforth, Dahlquist [21-

22], and Moulton have published the foundations of multistep 

Runge-Kutta techniques. Recently, some work on the Runge-

Kutta technique has been published, for example, Mechee and 

Yasen, Geeta and Varun [27-28] used extended RK 

integrators to solve ordinary differential equations. Vijeyata 

and Pankaj describe computational approaches for solving 

differential equations based on the Runge-Kutta method of 

various orders and kinds. Wusu and Akanbi investigated 

explicit fourth-derivative two-step linear multistep techniques 

for solving ordinary differential equations. 

Runge-Kutta techniques as well as their many variants are 

used to solve differential equations in a number of areas, as 

this brief overview shows. The Runge-Kutta method's 

formulae may be found in most textbooks [24-25]. Some 

books and publications provide the Runge-Kutta technique in 

a larger framework, rather than delving into the method in its 

final form [2]. Butcher displays the Runge-Kutta method's 

parameter values in a table, but in a compact manner [3].  The 

goal of this study is to demonstrate how to obtain various 

arbitrary parameters of the most commonly used fourth order 

Runge-Kutta method in the numerical analysis as well as the 

geometrical interpretation of the slope ik
’s at various stages. 

The majority of the information in this paper is sourced 

mostly from [2] and [25].  

This paper is arranged as follows: An introduction is given in 

section 1. The determining procedure of different parameters 

in the formation of the fourth order Runge-Kutta is described 

in detail in section 2. The geometrical concept of this method 

is discussed sequentially in section 3 that explained with 

figures. Sections 4 through 5 contain the discussion and 

conclusion. 

II. FORMULA DERIVATION OF THE FOURTH ORDER 

RUNGE-KUTTA (RK4) METHOD 

 The key idea of the fourth order Runge-Kutta method is to 

find the numerical solution of the first order ordinary 

differential equation  

0 0( , ), ( )
dy

f x y y x y
dx

   (1) 

In spite of the fact that the Runge-Kutta technique has several 

variations, it is best described as follows:

1 ( , )m m m my y hf x y    (2) 

where ( , )m mhf x y  is an increment function and the slope 

( , )m mf x y  may be recast as  

A 
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1 1 2 2 3 3 n nf a k a k a k a k      (3) 

The ia s and ik s in Eq. (3) are arbitrary constants where the 

general form of ik s are given by  

1

2 1 11 1

3 2 21 1 22 2

1 1,1 1 2,2 2 1, 1 1

( , )

( , )

( , )

( , )

m m

m m

m m

n m n m n n n n n

k f x y

k f x u h y v k h

k f x u h y v k h v k h

k f x u h y v k h v k h v k h     



  

   

     





(4) 

Eq. (4) clearly exhibits that each k is a functional evaluation 

and ik s is in recurrence relationship. A more used an 

alternative form to the fourth order Runge-Kutta method 

described in Equations (3) and (4) by 

1 2 3 4( ) ( )y x h y x ak bk ck dk       (5) 

where ik s are 

1

2 1

3 2

4 3

( , )

( , )

( , )

( , )

k hf x y

k hf x mh y mk

k hf x nh y nk

k hf x ph y pk



  

  

  

 (6) 

We derive the arbitrary constants , , , , , ,a b c d m n p  such that 

Eq. (5) is consistent with Taylor series solution up to term 
4h . 

From Eq. (1) 

' ( , )
dy

y f x y f
dx

    (7) 

Differentiating the above, we derive  

''
f dx f dy

y
x dx y dx

 
   
 

 (8) 

which implies that  

1'' .x yy f f f G    (9) 

Differentiating (9) another times 

 

 

 

2

''' ( , ) ( , ). ( , )

. . .

1 1 . .

x y

y yx x
y x y

xx xy yx yy y x y

d
y f x y f x y f x y

dx

f ff fdx dy dx dy
f f f f f

x dx y dx x dx y dx

f f f f f f f f f f f

 

   
         
    

           

 

which implies that  

2''' ( 2 . . ) ( . )xx xy yy y x yy f f f f f f f f f      (10) 

Let us suppose that 
2

2 2 . .xx xy yyG f f f f f   , thus (10) 

becomes 2 1yy G f G    (11) 

A more time derivative of  (10) yields 

   

         

     

2

2 2

2 2

2

[( 2 . . ) ( . )]

( 2 . . . . )

2 . . . .

. 2 . . .2 . .

iv

xx xy yy y x y

xx xy yy x y y

xx xy yy y x y

xx
xx xy xy yy yy

d d
y y f f f f f f f f f

dx dx

d
f f f f f f f f f

dx

d d d d d
f f f f f f f f f

dx dx dx dx dx

f dx dy df d d
f f f f f f f f f

x dx y dx dx dx dx

     

    

    

     
           

   2( ) . 2 .y x x y y y y

d d df d
f f f f f f f f

dx dx dx dx




   
      
   

 

 

2

2

[ .1 . ] 2 ( . ) . . 2 ( . ) . .

. . . . .

xy xy yy yy

xxx xxy xy x y x y

y yx x
y x y x y

f f f fdx dy dx dy
f f f f f f f f f f f f f

x dx y dx x dx y dx

f ff fdx dy dx dy
f f f f f f

x dx y dx x dx y dx

         
               

            

     
        

        
2 . . .

y y

y

f fdx dy
f f

x dx y dx

   
   

    

 

2 2

2 3

2 3 2

[ . ] 2 2 . . 2 ( . )

(2 2 . ) ( . ) ( . ) ( . )

. . 2 . ( . )

3 . 3 2 .

xxx xxy x xy y xy xxy xyy

x y yy xyy yyy y xx xy x xy yy

x y y y xy yy

xxx xxy xyy yyy y xx y xy

f f f f f f f f f f f f

ff f f f f f f f f f f f f f f f

f f f f f f f f f

f f f f f f f f f f f f f

       

            

     

      

        

2 2 3

2 3 2 2

3 3 . . 3 . .

3 .

3 . 3 2 . 3 . . .

y yy x xy y xy x yy

y yy x y y

xxx xxy xyy yyy y xx xy yy x y xy yy y x y

f f f f f f f f f f

f f f f f f f

f f f f f f f f f f f f f f f f f f f f f f f

  

  

           

Therefore, 

      

 

( ) 2 3 2

2

3 . 3 2 . 3 . .

.

iv

xxx xxy xyy yyy y xx xy yy x y xy yy

y x y

y f f f f f f f f f f f f f f f f f f f

f f f f

         

 
(12) 

Again consider  2 3

3 3 . 3xxx xxy xyy yyyG f f f f f f f    , 

thus Eq. (12) becomes 

 ( ) 2

3 2 1 13 .iv

y xy yy yy G f G G f f f f G      (13)  

The Taylor’s series in single variable is, 

     
2 3 4

5( ) ( ) ( ) ( ) ( )
2! 3! 4!

ivh h h
y x h y x hy x y x y x y x O h          (14) 
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Substituting the values of ( ), ( ), ( )y x y x y x     and 

( ) ( )ivy x  in equation (14), we get 

      
2 3 4

2

1 2 1 3 2 1 1( ) 3
2 6 24

y y xy yy y

h h h
y x h y x hf G G f G G f G G f ff f G            

 


 
2 3 4 3 4 4

4 2

1 2 3 1 2 1 1

1
( )

2 6 24 6 24 8 24
y y xy yy y

h h h h h h
y x hf G G G f G f G h f ff G f G          (15) 

Here, 

1 . ( , ) .k h f x y h f   

2 1( , )k hf x mh y mk     

Now, expanding the double variable function

1( , )f x mh y mk  by Taylor series, 

   

 

2

1 1 1

3

1

2 2 2 2 2

1 1 1

3 3 2 2 2 2 3 3

1 1 1

1
( , ) ( , ) ( , ) ( , )

2!

1
( , )

3!

1
2

2

1
3 3

6

x y xx xy yy

xxx xxy xyy yyy

f x mh y mk f x y mh mk f x y mh mk f x y
x y x y

mh mk f x y
x y

f mhf mk f m h f m hk f m k f

m h f m h mk f mhm k f m k f

      
          

      

  
  

  

     

    





 

Setting 1 .k h f in the above equation  

   

 

2 2 2

3 3 2 3

2 2 3 3

1 2 3

1
. 2 .

2

1
3 . 3

6

1 1

2 6

x y xx xy yy

xxx xxy xyy yyy

f mh f f f m h f f f f f

m h f f f f f f f

f mhG m h G m h G

     

    

    





 

Therefore,  

2 2 3 3

1 1 2 3

1 1
( , )

2 6
f x mh y mk f mhG m h G m h G       (16) 

Hence, 

2 2 3 3

2 1 2 3

1 1

2 6
k h f mhG m h G m h G

 
     

 
  (17) 

Again, given that 

3 2( , )k hf x nh y nk    

Further expanding 2( , )f x nh y nk  in Taylor series 

 

 

2 3

2 2 2 2

2 2 2 2 2

2 2 2

3 3 2 2 2 2 3 3

2 2 2

1 1
( , ) ( , )

2! 3!

1
2

2

1
3 3

6

x y xx xy yy

xxx xxy xyy yyy

f x nh y nk f x y nh nk f nh nk f nh nk f
x y x y x y

f nhf nk f n h f n hk f n k f

n h f n h nk f nhn k f n k f

          
              

          

     

    





Now, substituting this value of 2k  in the above equation we 

get 

2 2 3 3 4

2 1 2 3

2 2 2 2 2 3 3 4

1 2 3

2

2 2 2 3 3 4

1 2 3

3 3 3 2 2

1

1 1
( , )

2 6

1 1 1
2

2 2 6

1 1

2 6

1 1
3

6

x y y y y

xx xy

yy

xxx xxy

f x nh y nk f nhf nhff mnh f G m nh f G m nf h G

n h f n hf hf mh G m h G m h G

n f hf mh G m h G m h G

n h f n h f hf mh G

 
         

 

  
      

 

 
      

  

   







2 3 3 4

2 3

2

3 2 2 3 3 4

1 2 3

3

3 2 2 3 3 4

1 2 3

1

2 6

1 1
3

2 6

1 1

2 6

xyy

yyy

m h G m h G

n hf hf mh G m h G m h G

n f hf mh G m h G m h G

 
  

 

 
     

 

 
      

  







Collecting the orders of 
3( )O h  

 

  

2 2

2 1 2 1

3 3 2 2

3 2 1

1
( , ) 2

2

1
3 6

6

y

y xy yy

f x nh y nk f nhG h n G mnf G

h n G m nf G mn f ff G

      

   

(18) 

Therefore,  

    2 2 3 3 2 2

3 1 2 1 3 2 1

1 1
2 3 6

2 6
y y xy yyk h f nhG h n G mnf G h n G m nf G mn f ff G

 
         

 
  (19) 

Again, given that  

 4 3,k hf x ph y pk    

Expanding  3,f x ph y pk  by Taylor series, 

 

 

2 3

3 3 3 3

2 2 2

3 3 3

3 3 2 2 3

3 3 3

1 1
( , ) ( , )

2! 3!

1
2

2

1
3 3

6

x y xx xy yy

xxx xxy xyy yyy

f x ph y pk f x y ph pk f ph pk f ph pk f
x y x y x y

f phf pk f p h f hk f k f

p h f h k f hk f k f
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Substituting the value of 3k in the above equation 

    

    

3 2 4 3 2 2

3 1 2 1 3 2 1

2 2 2 3 2 4 3 2 2

1 2 1 3 2 1

2 3 2

1 2

1 1
( , ) 2 3 6

2 6

1 1 1
2 2 3 6

2 2 6

1 1

2 2

x y y y xy yy

xx y y xy yy

yy

f x ph y pk f phf pf hf nhG h n G mnf G h n G m nf G mn f ff G

p h f p h hf nhG h n G mnf G h n G m nf G mn f ff G

p f hf nhG h n G

 
             

 

  
           

  

   





    

    

2

4 3 2 2

1 3 2 1

3 3 2 2 3 2 4 3 2 2

1 2 1 3 2 1

1
2 3 6

6

1 1 1
3 2 3 6

6 2 6

y y xy yy

xxx xxy y y xy yy

mnf G h n G m nf G mn f ff G

p h f p h pf hf nhG h n G mnf G h n G m nf G mn f ff G

  
      

   

  
            

  



 

 Simplifying the above equation  

 

  

2 2

3 1 2 1

3 3 2 2 2

3 2 1 1

1
( , ) 2

2

1
3 6 6

6

y

y xy yy y

f x ph y pk f phG h p G pnf G

h p G n pf G np f ff G mnpf G

      

    

 (20) 

Now, substituting this value in the  4 3,k hf x ph y pk  

equation we get, 

    2 2 3 3 2 2 2

4 1 2 1 3 2 1 1

1 1
2 3 6 6

2 6
y y xy yy yk h f phG h p G npf G h p G n pf G np f ff G mnpf G

 
          

 
  (21) 

Substituting the values of 1 2 3 4, , ,k k k k  in equation (5) we get, 

 

     

   

2 2 2 3

1 2

3 3 3 4 3 2 2 4

3 1 2

2 2 4 4 2 5

1 1

1
( ) ( ) ( ) ( )

2

1 1

6 2

( )

y y

x y y y y

y x h y x a b c d hf bm cn dp hG bm cn dp h G

bm cn dp h G cmn dnp h f G cm n dn p h f G

cmn dnp h f ff G dmnph f G O h

           

      

    

 (22) 

Comparing the equations (15) and (22) we get 

2 2 2

3 3

1

1

2

1

3

1
3

4

a b c d

bm cn dp

bm cn dp

bm cn dp

   

  

  

  

 

2 2

2 2

1

6

1

8

1

12

1
dmnp

24

cmn dnp

cmn dnp

cm n dn p

 

 

 



 

The above set of equations is an overdetermined system of 

eight equations with seven variables. Solving the set of 

algebraic equations using the graphing utility like as Maple or 

Mathematica, the classical solution becomes 

1 1 1 1 1 1
, , , , , , 1

6 3 3 6 2 2
a b c d m n p        (23) 

Putting these values in Eqs. (5) and (6) we get, 

  1 2 3 4

1
( ) ( 2 2 ),

6
y x h y x k k k k       (24) 

where 

 

 

1

2 1

3 2

4 3

,

1
,

2 2

1
,

2 2

, .

k hf x y

h
k hf x y k

h
k hf x y k

k hf x h y k



 
   

 

 
   

 

  

 (25) 

III. GEOMETRICAL INTERPRETATION OF SLOPE 

PARAMETER ik ’S: 

Before illustrating the geometric interpretation of the RK4 

method, we provide a useful explanation of the most naive 

Euler method. In the figure 1, the exact solution y in the 

graph is a curve C in the xy plane. Here, 0 0( , )P x y is the 

initial point and T be the tangent to the curve at P .  Let N

and M be the points where the line 0x x h  meets the 

curve and the tangent respectively. Thus the exact value of 1y

at 1 0x x h  is SN and the approximated value of 1y at 

1 0x x h  is represented by SM since

1 0

1 0 0 0

tan

( , )

SM SQ MQ

y y PQ

y y h f x y



 

 

 

 

Suppose consider 0 0( , )k h f x y therefore 1 0y y k 

where the value of k is the slope of the curve at the point 

0 0( , )x y multiplied by increment h of x .  

 

Fig. 1: The basic geometry of the Euler method 

Now let us back to the RK4 formula Eq. no. (24). Rewrite this 

equation as  



International Journal of Research and Scientific Innovation (IJRSI) |Volume IX, Issue IV, April 2022|ISSN 2321-2705 

www.rsisinternational.org Page 31 
 

 

1 0 1 2 3 4

1
( 2 2 )

6
y y k k k k      

The first approximated value 1y of y is evaluated by the 

weighted average slopes at different points. From Eq.(25), the 

slope of the function are evaluated at the different four points 

viz.  , ,x y  12, 2 ,x h y k   12, 2x h y k   and 

 3,x h y k   (Fig. 2) 

 

Fig. 2: Slopes used by the classical Runge-Kutta method 

From the Fig. 2, and Eq. (25) it is clearly seen that 

 1 ,k hf x y is the slope of the curve at the beginning of the 

interval which is evaluated by the Euler’s method. 

 2 12, 2k hf x h y k   is the slope of the curve at the 

midpoint of the interval by using y and 1k . Therefore the 

recurrence relation is used i.e. the slope function 2k is 

evaluated with the help of first slope 1k . Again, the slope 

 3 22, 2k hf x h y k   is evaluated at the midpoint but 

this time using y and 2k . Finally, the slope 

 4 3,k hf x h y k   is derived at the end of the interval 

using y and 3k . In averaging the four slopes, it is seen from 

Eq. (24) that greater weight is given to the slopes at the 

midpoint.  

IV. DISCUSSION 

A number of different Runge-Kutta methods have been 

proposed and developed. Differential equations of various 

orders have been the subject of numerous theoretical and 

numerical researches that have been published in the literature 

which includes a collection of implicit and explicit methods 

for estimating the solutions of ODEs. In order to better 

understand and use the RK techniques, first we must study 

and derive them more directly and then it dire needs to 

understand them graphically which is shown in the earlier 

section. Notably, the increment functions ( , )m mhf x y  are 

used in Eq. (2) whereas the k's are related by the Eq. 4. The 

recurrence relation holds in here. The Eq. (5) and (6) exhibits 

of using a weighted approximations of where the weights are 

a’s and , ,m n p are arbitrary constants. These constants' 

derivation techniques are given in a clear, step-by-step 

manner. The overdetermined equation system is solved using 

Maple, a mathematical computing tool. 

V. CONCLUSION 

The main goal of this work is, first, to provide more details on 

how to formulate the fourth order Runge-Kutta formula, and 

secondly, to provide a geometrical interpretation of the 

weighted slopes which are applied at four stages. This study 

aims to present a deeper knowledge of the RK4 method's 

fundamental principles, as well as to improve its analytical 

capabilities in order to encourage further research into this 

formula. The study is particularly essential for comprehending 

the overall formulation of the Runge-Kutta technique of 

fourth order in general. Our main concern is to obtain 

familiarity with the procedure itself and to develop skills in 

applying it. 
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