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Abstract: Many practical issues in science and engineering are
formulated by ordinary differential equations (ODE) that
require their own numerical solution. There are a variety of
numerical approaches, e.g. the Euler method, the modified Euler
method, the Heun's method, the Adam-Bashforth method, and so
on, that exist in the context of numerical analysis. Amongst them,
the classical fourth order Runge-Kutta (RK4) technique is the
most reliable and most used. The objective of this paper is
twofold. The first goal is to derive the value of different
parameters in the formulation of the fourth order Runge-Kutta
method, and the second goal is to give details of the geometrical
interpretation of this method, principally explaining the role of

the increment parameters K, in the formula. The whole

discussion will facilitate perception of the key mechanism of the
Runge-Kutta method.

Keywords: Runge-Kutta method, Euler method, Heun’s method,
Increment parameter.

I. INTRODUCTION:

Around 1900, two German mathematicians, Curl Runge
and Wilhelm Kutta, devised the Runge-Kutta techniques
in numerical analysis [1]. In 1895, C. Runge presented a
work that was a more complex development and was an
extension of the Euler method's approximation. To determine
the numerical solution of differential equations, various order
Runge-Kutta techniques have been widely utilized [2-3]. To
solve second-order fuzzy differential equations, a novel
version of the enhanced Runge-Kutta Nystrom technique is
used [4]. For the numerical solution of n-th order fuzzy
differential equations based on the Seikkala derivative with
initial value issue [5-8], the Runge-Kutta technique of order
five is utilized. Also, the fourth and fifth-order Runge-Kutta
techniques [9-11] are used to the specific Lorenz equation. In
[12-14], implicit and multistep Runge-Kutta techniques are
investigated. Euler and Coriolis [15-16] explore the
fundamental concepts of differential equation theory and their
numerical solution. In the articles of Runge [17], Heun [18],
and Nystrom [19], the early works of the Runge-Kutta
technique are examined. Adams and Bashforth, Dahlquist [21-
22], and Moulton have published the foundations of multistep
Runge-Kutta techniques. Recently, some work on the Runge-
Kutta technique has been published, for example, Mechee and
Yasen, Geeta and Varun [27-28] used extended RK
integrators to solve ordinary differential equations. Vijeyata

h1,2,3

and Pankaj describe computational approaches for solving
differential equations based on the Runge-Kutta method of
various orders and kinds. Wusu and Akanbi investigated
explicit fourth-derivative two-step linear multistep techniques
for solving ordinary differential equations.

Runge-Kutta techniques as well as their many variants are
used to solve differential equations in a humber of areas, as
this brief overview shows. The Runge-Kutta method's
formulae may be found in most textbooks [24-25]. Some
books and publications provide the Runge-Kutta technique in
a larger framework, rather than delving into the method in its
final form [2]. Butcher displays the Runge-Kutta method's
parameter values in a table, but in a compact manner [3]. The
goal of this study is to demonstrate how to obtain various
arbitrary parameters of the most commonly used fourth order
Runge-Kutta method in the numerical analysis as well as the

geometrical interpretation of the slope ki ’s at various stages.
The majority of the information in this paper is sourced
mostly from [2] and [25].

This paper is arranged as follows: An introduction is given in
section 1. The determining procedure of different parameters
in the formation of the fourth order Runge-Kutta is described
in detail in section 2. The geometrical concept of this method
is discussed sequentially in section 3 that explained with
figures. Sections 4 through 5 contain the discussion and
conclusion.

Il. FORMULA DERIVATION OF THE FOURTH ORDER
RUNGE-KUTTA (RK4) METHOD

The key idea of the fourth order Runge-Kutta method is to
find the numerical solution of the first order ordinary
differential equation

dy _
dx
In spite of the fact that the Runge-Kutta technique has several
variations, it is  best described as  follows:

ym+1 = ym + hf (Xm’ ym) (2)

where hf (X,,Y,,) isan increment function and the slope
f (X, Y,,) may be recast as

f(x¥), Y(%)=Yo 1)
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f =ak +ak, +ak, +---+ak, 3

The a;sand ks in Eqg. (3) are arbitrary constants where the
general form of k; s are given by

k= f(X, Y,)
k, = f(x, +uh,y, +v,kh)
ky = f(x, +uh,y, +V,kh+v,k,h) 4)

k,=f(x,+u,,hy,+ vn_mklh + Vn_z,zkzh ot vn_l,n_lkn_lh)

Eq. (4) clearly exhibits that each k is a functional evaluation
and k;s is in recurrence relationship. A more used an

alternative form to the fourth order Runge-Kutta method
described in Equations (3) and (4) by

y(x+h) = y(x) + ak, +bk, +ck, + dk, (5)
where k; s are

k, =hf(x,Yy)

k, =hf (x+mh,y +mk,)

k, =hf (x+nh,y +nk,)

k, =hf (x+ ph,y+ pk,)

(6)

We derive the arbitrary constants a,b,c,d,m,n, p such that
Eqg. (5) is consistent with Taylor series solution up to term h*.
From Eq. (1)

. d

y'=T=t(xy) =" ™
dx

Differentiating the above, we derive
ot dx ot dy ®
ox dx oy dx

which implies that
y'=f +f.f, =G 9)

Differentiating (9) another times
. d
y =&(fx(x,y)+ f (%), (x,))

X dx o
_O de oy f{ dx ydy}rf(fﬁf.fy)

T ox dx oy dx OX dx oy dx
= Lt By fr f[ L b F 46+ £F]

which implies that

y =(f+2f.f + 20 )+ f (f +f.1) (10)

Let us suppose that G, = f, +2f.f + f°.f
becomes y" =G, + f G, (11)

, thus (10)

A more time derivative of (10) yields

(iv d " d
Y ):&(y ):&[(fxx+2f.fxy+fz.fw)+fy(fx+f.fy)]

%(fxx+2f.fxy+f2.fw+fx.fy+f.fyz)

d d d d d

= (2o (1 ) (15, e (i f e {1)

oy 30y o 8 .y
&& 5(&) dx 2{fxyd_x f&(fw)}{fw'ﬁ'f+f2'&(fwﬂ

d d o
+[fyd—(f)+f&(f)] [f o 2ff&(fy)}

a de o a dx of
=[f 1 112 8+ 16+ f—‘yd— JQ +26(f, +f.fy)+f2 —W.KC—W.d—y
0 de gy dx o dc dy dx

§ o o Ao
LR AN A 114 211 hody
8deo\/dx e oy k)| |’ Tk dk dy dx

<[f,+ 14, 4 200, #2008, 2, 41, 1)
#(of 21 .fy)fw+fz(fxw+f.fw)ny(wfw.f)+fx(fw+fw.f)}
f

|
AT L2+ 00

1300, 4300, 4, 40200 #1061 300 4300, 4304

+31% f +H+H3

/RS
=(f, 4300, #3004 10, Dot (6 4200+ 0 Jo3(f e 1)+ 01, Je£1{1 401

Therefore,
=1, 4300, 4300+ 1 Jo 6 (£, 4200+ 616 )3 £+ 6 (1, 4 .5

aHIRIAN 4

Again consider G, = (fXXX+3f f, +3f2fxyy+f3fyyy),
thus Eq. (12) becomes

y© =G, + 1,6, +3G,( f, + f.f, )+ {7G, (13)

The Taylor’s series in single variable is,

2 3 4

VLY 0+0(K) 1)

y(x+h)=y(x)+hy'(x)+ 3 m
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Substituting the values of y'(X), y"(X), y"(x) and
y™ (x) in equation (14), we get
. i 2
y(x+h)= y()+hf+ZG+6(G +fG)+2 {Gﬁfsz+3G1(fxy+ﬁw)+fy GI}N-
Woonh N bt 1 ht
X)+hf +—G,+—G6,+—G,+—f G +—f G, +-h'(f +1f |G +—fC+- (15
O G0t 6 U (L 4 e - (18)
Here,
k =h.f(x,y)=h.f

k, =hf (x+ mh, y+mk))

Now, expanding the double variable function

f (x+mh, y+mk;) by Taylor series,

f(x+mh,y+mk)=f(xy)+ mhﬁ+mkg f(x, y) mha+mk 0 2f(x y)+
1 l 1 ax 1by aX 8y 1

3
Yon o 2ty
3"y
1+ (m, +mk1fy)+%(m2h2 f, 2, +nfit

1Ny

é(mh3f +3nhemk £, + 3k, +m )

1 0y

Setting k, = h.f in the above equation

=f+mh(f,+ f.fy)+%m2h2(fxx+2f.fxy+ tf,)

XXX

+1m3h3(f +3f.6, #3726 + 151 )+
6

1 212 1 31,3
=f+thl+Ethz+gthg+---
Therefore,
f(x+mh,y+mk)=f +thl+%m2hZG2 Jr%mi“h?(;3 +e-- (16)
Hence,

1 22 1 33

kz:h[f"'thl"'Emth+€th3+"1 (17)

Again, given that
k; = hf (x+nh,y+nk,)

Further expanding f (X+nh, y +nk,) in Taylor series

A 2 3
F(x+nn,y+nk,)=f(x,y)+ nh£+nk2g f+l nthkzﬁ f+— nh6+nk 0 fe
a oyl A oy x oy
= f o+l f, + (Zth £t g+, |

(nhf +3h0K f + 30T 0T e

20y 2%y

Now, substituting this value of k, in the above equation we
get

f(x+nh,y+nk,)=f +nhf +(nhffy +mnh2fyGl+%m2nh3fyG2 +%m3nfyh“G3 +)
%{nzhz f. +2n2hfxy(hf +Mh'G, Jr%mzhsG2 +%m3h“G3 +j
1 1 ‘
1 fw(hf +mh’G, +Em2h362 +6m3h“(;3 +j }
+1[n3h3f FIEE (B 4G, + S, + LG, +--
6 XXX XXy 1 2 2 6 3
3 2 1 213 l 3d 2
+3n hfny hf +mh G1+Eth2+6tha+m
3 2 1 213 1 3pd 3
+N fyyy hf +mh G1+Em th+6th3+---
Collecting the orders of O(h®)
f h k,)=f +nhG 1h2 %G, +2mnf G
(x+nh,y+nk,)=f+n 1+§ (n , +2mnf, 1)+
1 (18)
5hs(ns(33+3mznfy(32+6mnz(fxy N ﬁw)G1)+"'
Therefore,
k —h[f+nhG +Eh2(n2G +2mnfG)+Eh3(nSG 31011 G+ 6’ £, + )G)ﬁ (19)
37 1 ) 2 yo1 6 3 Y2 Wyl

Again, given that
k, =hf (x+ ph,y+ pk;)

Expanding f (x+ ph,y + pk; ) by Taylor series,
2 3
AT B A T B
e k)= (6 )| pt ph = -t | 4| pht pk | £
(s phy+ k)= (1) [p > pgay] 2![p > p%y] 31[pax DWJ
3y

:f+phfx+pk3fy+;p2(h2f 0 o

1
épa(hafwﬂh f, #3GE, o
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Substituting the value of K in the above equation

f(x+ph,y+pk3):f+phfx+pf{m+nhel+iha(nzez+2mnfyel)+;w(nsea+3m2nfyez+emn2(fw+ﬁw)el)+~}

+ﬂp2h7fm+2p2h(hf+nhG1+;hg(nsz+2mnfyG1)+éh“[n363+3m2nfy62+6mn2(fxy+ﬁW)G1)+---H

2
+;{psz[hf +nhG1+%h3(nZG2 +2mnfy<31)+%h“(n363 #3101 G, +6m 1, + ﬁW)Gl)+”‘J }

+é[p3h3 £ +3pht pfw[hf +nhGl+%h’(nZG2 +2mnfyGl)+%h“(n3G3 +3n1 G, + 6’ + ﬁW)G1)+~-]+--~]

Simplifying the above equation
f(x+ph,y+pk;)=f + thﬁ%hz(szz +2pnfy61)+
%h3(pSG3 +3n°pf G, +6np2(fXy + ffyy)G1 +6mnpfy261)+...

Now, substituting this value in the k, = hf (x+ ph, y + pk;)
equation we get,

1 1
k=h f+th+zhz(szz+2npfy(31)+6h3(p3(33+3n2pfyG2+6np7(fxy+ﬁW)Gl+6mnpffGl)+-‘} (21)

Substituting the values of K;, K, , K,, K, in equation (5) we get,

Y0+ 2 y(x)+ (@+h+c+d)hf +(bm+cn+dp)hGl+;(bm2 +on’ +dp2)hsG2
+é(bm3+cng+dp3)h“63+(cmn+dnp)h3fyGl+;(cm2n+dnzp)h“fyG2 (22)
[+ dnp’ i (£, + 1, )6, +dnph*£°6, + (1)

Comparing the equations (15) and (22) we get

a+b+c+d=1 cmn+dnp=%
1
bm+cn+dp_§ cmn2+dnp2=%
bm? +cn’ + dp? 1 ) , 1
3 cm‘n+dn“p=—
1 12
bm® +cn3+dp® == 1
4 dmnpzﬂ

The above set of equations is an overdetermined system of
eight equations with seven variables. Solving the set of
algebraic equations using the graphing utility like as Maple or
Mathematica, the classical solution becomes
azl,bzl,c=l,d :l,mzl,nzl, p=1 (23)

6 3 3 6 2 2

Putting these values in Egs. (5) and (6) we get,

y(x+h)=y(x) +%(kl +2k, + 2k, +k,), (24)
where
k, =hf (x,y)

h 1
k, = hf —,y+=k
) (x+2 y+2 1}

h (25)
k3=hf[x+ Y+ kzj

k, =hf (x+h,y+k;).

I1l. GEOMETRICAL INTERPRETATION OF SLOPE
PARAMETERK; ’S:

Before illustrating the geometric interpreta&m of the RK4
method, we provide a useful explanation of te most naive
Euler method. In the figure 1, the exact solution yin the

graph is a curve C in the xyplane. Here, P(X,,Y,) is the
initial point and T be the tangent to the curve at P. Let N
and M be the points where the line X=X, +h meets the

curve and the tangent respectively. Thus the exact value of Y,
at X, =X, +his SNand the approximated value of vy, at

X, =X, +his represented by SM since
SM =SQ + MQ

y, =Y, +PQtand

Y1 = Yo+ (X, Yo)
Suppose consider k=h f(X,,Y,) therefore 'y, =y, +k

where the value of K is the slope of the curve at the point
(X, Yo ) multiplied by increment h of X.

C

P(x5.%0)

-0
y

xXgt+it x
Fig. 1: The basic geometry of the Euler method

Now let us back to the RK4 formula Eq. no. (24). Rewrite this
equation as
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1
V1= y0+€(k1+2k2 +2k3+k4)

The first approximated value Yy, of yis evaluated by the

weighted average slopes at different points. From Eq.(25), the
slope of the function are evaluated at the different four points

viz. (X,y), (x+h/2,y+k/2), (x+h/2,y+k/2) and
(x+h,y+k;) (Fig. 2)

Ly

y

Vo +hk)2
Yy +hky /2

.TD [T

vy +hk,

Fig. 2: Slopes used by the classical Runge-Kutta method
From the Fig. 2, and Eqg. (25) it is clearly seen that
k, =hf (X, y) is the slope of the curve at the beginning of the
interval which is evaluated by the Euler’s method.
k, =hf (x+h/2,y+k /2)is the slope of the curve at the
midpoint of the interval by using yand Kk;. Therefore the
recurrence relation is used i.e. the slope function Kk,is
evaluated with the help of first slopek;. Again, the slope
ks =hf (x+h/2,y+k,/2) is evaluated at the midpoint but
using k,. Finally, the
k, =hf (x+h,y+k;)is derived at the end of the interval

this  time y and slope

using yand K,. In averaging the four slopes, it is seen from

Eq. (24) that greater weight is given to the slopes at the
midpoint.

IV. DISCUSSION

A number of different Runge-Kutta methods have been
proposed and developed. Differential equations of various
orders have been the subject of numerous theoretical and
numerical researches that have been published in the literature
which includes a collection of implicit and explicit methods
for estimating the solutions of ODEs. In order to better
understand and use the RK techniques, first we must study
and derive them more directly and then it dire needs to
understand them graphically which is shown in the earlier

section. Notably, the increment functions hf(x.,y,) are

used in Eq. (2) whereas the k's are related by the Eq. 4. The
recurrence relation holds in here. The Eq. (5) and (6) exhibits
of using a weighted approximations of where the weights are
a’s and m,n, pare arbitrary constants. These constants'

derivation techniques are given in a clear, step-by-step
manner. The overdetermined equation system is solved using
Maple, a mathematical computing tool.

V. CONCLUSION

The main goal of this work is, first, to provide more details on
how to formulate the fourth order Runge-Kutta formula, and
secondly, to provide a geometrical interpretation of the
weighted slopes which are applied at four stages. This study
aims to present a deeper knowledge of the RK4 method's
fundamental principles, as well as to improve its analytical
capabilities in order to encourage further research into this
formula. The study is particularly essential for comprehending
the overall formulation of the Runge-Kutta technique of
fourth order in general. Our main concern is to obtain
familiarity with the procedure itself and to develop skills in

applying it.
REFERENCES

[1]. Butcher J.C., “A history of Runge-Kutta methods,” Applied
Numerical Mathematics, vol. 20, pp. 247-260, 1996.

[2]. Chapra S.C., Canale R.P., “Numerical Methods for Engineers,” 6"
ed., McGraw Hill Education, New Delhi, 2012.

[3]. Butcher J.C., “Numerical Methods for Ordinary Differential
Equations,” John Wiley and Sons, Ltd, Hoboken, NJ, 2008.

[4]. Parandin, N., “Numerical solution of fuzzy differential equations
of 2nd order by Runge-Kutta method,” Journal of Mathematical
Extension, vol.7, no. 3, pp. 47-62, 2013.

[5]. Jayakumar T., T. Muthukumar T., Kanagarajan K., “Numerical
solution of fuzzy differential equations by Runge-Kutta Verner
Method,” Communications in Numerical Analysis, vol. 1, pp. 1-
15, 2015.

[6]. Jayakumar, T., Kanagarajan, K., and Indrakumar, S., “Numerical
solution of Nth-order fuzzy differential equation by Runge-Kutta
method of order five,” International Journal of Mathematical
Analysis, vol. 6, no. 58, pp. 2885-2896, 2012.

[7]. Abbasbandy, S., Allahvinloo, T., and Darabi, P., “Numerical
solution of Nth-order fuzzy differential equations by Runge-Kutta
method,” Mathematical and Computational Applications, vol. 16,
no. 4, pp. 935-946, 2011.

[8]. Akbarzadeh, Z., and Mohseni, M., “Solving fuzzy differential
equations by Runge-Kutta method,” Journal of Mathematics and
Computer Science, vol. 2, no. 2, pp. 208-221, 2011.

[9]. Nikolaos, S. C., “An algorithm using Runge-Kutta methods of
orders 4 and 5 for systems of ODEs’,” International Journal of
Numerical Methods and Applications, vol. 2, pp. 47-57, 2009.

[10]. Emre, S., “Comparison of Runge-Kutta methods of order 4 and 5
on Lorenz equation,” Journal of Arts and Sciences, vol. 11, pp. 61-
69, 2005.

[11]. Fae’q, A., and Radwan, A., “Solution of Initial Value problem
using fifth order Runge—Kutta method using Excel spreadsheet,”
Journal of Applied Sciences, vol. 2, no. 1, pp. 44-47, 2002.

[12]. Butcher J.C., “The Numerical Analysis of Ordinary Differential
Equations,” John Wiley & Sons, 1986.

[13]. Burrage K., Butcher J.C. and Chipman F.H., “An implementation
of singly-implicit methods,” vol. 20, pp. 326-340, 1980.

[14]. Butcher J.C., “Implicit Runge-Kutta Processes,” Math. Comput.,
vol. 18, pp. 50-64, 1964.

www.rsisinternational.org

Page 31



International Journal of Research and Scientific Innovation (IJRSI) |Volume IX, Issue IV, April 2022 |ISSN 2321-2705

[15].
[16].

[17).

[18].

[19].
[20].

[21].

[22].

[23].

[24].

Euler L., “Institutionum Calculi Integralis,” Volumen Primum,
Opera Omnia, vol. XI, 1768.

Curtiss C.F., Hirschfelder J.O., “Integration of stiff equations,”
Proc. Nat. Acad. Sci., vol. 38, pp. 235-243, 1952.

Heun K., “Neue Methode zur approximativen Integration der
Differential gleichungen einer unabhangigen Verdnderlichen,”
Zeitschr. f'ur Math. u. Phys., vol. 45, pp. 23-38, 1900.

Kutta W., “Beitrag zur néherungsweisen Integration totaler
Differential gleichungen,” Zeitschr. f'ur Math. u. Phys., vol. 46,
pp. 435-453, 1901.

Runge C, “Ueber die numerische Aufldsung von Differential
gleichungen,” Math. Ann., vol. 46, pp. 167-178, 1895.

Nystrom E.J., “Ueber die numerische Integration von Differential
gleichungen.” Acta Soc. Sci. Fenn., vol. 50, pp.1-54, 1925.
Dahlquist G., “Convergence and stability in the numerical solution
of ordinary differential equations,” Math. Scand. Vol. 4, pp. 33-53,
1956.

Dahlquist G., “A special stability problem for linear multistep
methods”, BIT, vol. 3, pp. 27-43, 1963.

Julyan, H. E., and Oreste, P., “The dynamics of Runge—Kutta
methods,” International Journal of Bifurcation and Chaos, vol. 2,
pp. 27-449, 1992.

Jain R.K., lyenger S.R., “Numerical Methods: Advanced
Engineering Mathematics,” Narosa Publishing House, New Delhi,
2014.

[25].

[26].

[27].

[28].

[29].

[30].

[31].

Goel B.S., Mittal S.K., “Numerical Analysis,” 13" ed., Pragati
Prakashan, Delhi, 1998.

Simos T.E., “A modified Runge-Kutta method for the numerical
solution of ODE’s with oscillation solutions,” Appl. Math. Lett.,
vol. 9, no. 6, pp. 61-66, 1996.

Geeta A., Varun J., “Developments in Runge-Kutta method to
solve ordinary differential equations, Recent Advances in
Mathematics for Engineering,” DOI:10.1201/978042900304-9,
March 2020.

Mechee M.S., Yasen R., “Generalized RK integrators for solving
ordinary differential equations: A survey & comparison study,”
Global Journal of Pure and Applied Mathematics, vol.13, no. 7,
pp. 2923-2949, 2017.

Vijeyata C., Pankaj K.S., “Computational techniques based on
Runge-Kutta method of various order and type for solving
differential equations,” International Journal of Mathematical,
Engineering and Management Sciences, vol. 4, no. 2, pp. 375-386,
2019.

Wusu A. S., Akanbi M. A., “Explicit fourth-derivative two-step
linear multistep method for ordinary differential equations,”
Journal of Research and Review in Science, vol. 4, pp. 105-109,
2017.

Butcher J.C., “Coefficients for the study of Runge-Kutta
integration processes,” J. Austral. Math. Soc., vol. 3, pp. 185-201,
1963.

www.rsisinternational.org

Page 32



