
International Journal of Research and Scientific Innovation (IJRSI) |Volume IX, Issue V, May 2022|ISSN 2321-2705

www.rsisinternational.org Page 77

Dual Quaternion Hardware Accelerator for RISC-V

based System
Rajeshwari B, Rithvik Kumar, Shweta P Hegde, Manav Eswar Prasad, Vandhya D M, Bajrangabali B

Department of Electronics and Communication, PES University, India

Abstract— In this work, a hardware accelerator has been

developed for a RISC-V processor. The ‘Parashu’ Shakti

processor is the SoC of choice for application testing and

development. The IP is designed to speed up applications

involving dual quaternion operations. Our module primarily aids

dual quaternion multiplication which further helps with other

complex operations like translation, rotation and transformation.

Two solutions have been proposed for the same, i.e. either a

quaternion IP if power and resource utilization is a concern, or a

dual quaternion IP if performance gain is the primary objective.

The latter is however at the expense of relatively more resource

utilization. The former IP takes longer execution time to perform

the same task but is more versatile since it can be used in

applications involving both quaternion and dual quaternion

operations.

Keywords— RISC-V, Dual Quaternion, Shakti Processor,

Hardware Accelerator, Robotics

I.INTRODUCTION

n modern society, RISC-V is an emerging technology and is

rapidly developing as it is an open ISA that offers stability,

scalability and security. RISC-V is an open standard

instruction set architecture (ISA) based on established reduced

instruction set computer (RISC) principles. The dynamic and

modular aspects make RISC-V ISA a compelling choice for

IP development[1],[2]. The SHAKTI Processor Program,

based on the RISC-V ISA, was started as an academic

initiative back in 2014 by IIT Madras. The monopoly of a

handful of companies in the processor market and the growing

demand for customizable SoC’s and ASIC’s (Application

Specific Integrated Chips) was the motivation behind the

development of the open-source processor ecosystem.

Dual quaternion is a combination of Quaternions and dual

number theory ,a tool for expressing and analyzing the

physical properties of rigid bodies. It is considered to be better

than the conventional Cartesian coordinate system since it is

singularity free, avoids Gimbal lock(loss of a degree of

freedom in a rotation system when two axis of rotation

coincide), yields the shortest interpolation path for the system

and it can formulate the problem more concisely with greater

precision, since 4 states per quaternion are used to represent a

3- dimensional space.

II. RELATED WORKS

The Shakti processor ecosystem offers a plethora of

processors from basic ones like E and C class to multi core

one like M and S class. The E class SoC i.e. Parashu core has

been selected for our application and it follows a 3 stage in –

order execution pipeline [3]. There is a wide range of tools

provided for application development including Shakti SDK

(Software Development Kits), Platform IDE extension for

Visual Studio and Arduino IDE as well. Development boards

supported for these processors are the Artix 7 35T and Artix 7

100T board [4].

Dual quaternions are a singularity free and unambiguous

alternative to the conventional Cartesian coordinate system

which unify the translation and rotation into a single state [5]

widely employed in modern day robotics [6]. This paper sheds

the role of Dual quaternions in the field of kinematics for key

operations like rotation, translation and transformation [7]

where we have observed the prominent operation to be

multiplication. We have accelerated the same by utilizing an

optimized algorithm which performs 24 real multiplications

and 64 real additions down from the conventional algorithm

which involves 64 real multiplications and 56 real additions

[8]. This multiplication IP relies on a 32 bit FPU unit that was

designed as well [9]. Today, dual quaternion finds its

application in the field of motion graphics as well, since it

fares better both in terms of accuracy and efficiency in

operations like skinning and blending than alternative

algorithms like spherical blend and log-matrix respectively

[10].

III. DESIGN AND IMPLEMENTATION OF HARDWARE

ACCELERATOR

The hardware accelerator has been designed majorly to

multiply two dual quaternions. With this motive, two types of

IPs have been designed namely, Dual quaternion IP and

Quaternion IP. As mentioned in [11],the dual quaternion can

be represented as

q = qr + qdϵ (1)

 Where qr and qd are real and dual parts and each quaternion

q can be expressed as,

qr= r (2)

qd= (3)

 Where r is the quaternion representing the rotation and t is

the quaternion describing the translation. Each quaternion is

of the form,

q(w,v) = w + (xi + yj+ zk) (4)

I

International Journal of Research and Scientific Innovation (IJRSI) |Volume IX, Issue V, May 2022|ISSN 2321-2705

www.rsisinternational.org Page 78

where w, x, y and z are the numerical values and i, j and k are

the imaginary components. The designed hardware

accelerators multiply the two dual quaternions by following

the below-mentioned methods.

A.Dual quaternion IP

The multiplication in case of dual quaternion IP is as

mentioned in the literature [11]. If Q and P are two dual

quaternions of 8 elements each represented as,

Q = qr1 + qd1 (5)

 P = qr2 + qd2 (6)

 then, the multiplication of these dual quaternions can be

written as,

 T = Q.P (7)

Table I. Dual Quaternion Multiplication Table

Q.P P.1 P.i P.j P.k P.ϵi P.ϵj P.ϵk P.ϵ

Q.1 1 i J K ϵi ϵj ϵk ϵ

Q.i i -1 K -j -ϵ ϵk -ϵj ϵi

Q.j j -k -1 I -ϵk -ϵ ϵi ϵj

Q.k k J -i -1 ϵj -ϵi -ϵ ϵk

Q.ϵi ϵi -ϵ ϵk -ϵj 0 0 0 0

Q.ϵj ϵj -ϵk -ϵ ϵi 0 0 0 0

Q.ϵk ϵk ϵj -ϵi -ϵ 0 0 0 0

Q.ϵ ϵ ϵi -ϵj -ϵk 0 0 0 0

The final dual quaternion multiplication output T contains 8

elements where the, Real quaternion component of the

resulting dual quaternion is obtained by:

T[0] = P[0]∗Q[0]−P[1]∗Q[1]−P[2]∗Q[2]−P[3]∗Q[3] (8)

T[1] = P[0]∗Q[1]+P[1]∗Q[0]+P[2]∗Q[3]−P[3]∗Q[2] (9)

T[2] = P[0]∗Q[2]+P[2]∗Q[0]−P[1]∗Q[3]+P[3]∗Q[1] (10)

T[3] = P[0]∗Q[3]+P[3]∗Q[0]+P[1]∗Q[2]−P[2]∗Q[1] (11)

Dual quaternion component of the resulting dual quaternion

 is obtained by:

T[4] = P[4] ∗ Q[0] + P[0] ∗ Q[4] + P[7] ∗ Q[1] + P[1] ∗ Q[7]−

P[6] ∗ Q[2] + P[2] ∗ Q[6] + P[5] ∗ Q[3] − P[3] ∗ Q[5] (12)

T[5] = P[5] ∗ Q[0] + P[0] ∗ Q[5] + P[6] ∗ Q[1] − P[1] ∗ Q[6]+

P[7] ∗ Q[2] + P[2] ∗ Q[7] − P[4] ∗ Q[3] + P[3] ∗ Q[4] (13)

T[6] = P[6] ∗ Q[0] + P[0] ∗ Q[6] − P[5] ∗ Q[1] + P[1] ∗ Q[5]+

P[4] ∗ Q[2] − P[2] ∗ Q[4] + P[7] ∗ Q[3] + P[3] ∗ Q[7] (14)

T[7] = P[7] ∗ Q[0] + P[0] ∗ Q[7] − P[1] ∗ Q[4] − P[4] ∗ Q[1]−

P[2] ∗ Q[5] − P[5] ∗ Q[2] − P[3] ∗ Q[6] − P[6] ∗ Q[3] (15)

As shown in TABLE 1, some terms with coefficient ϵ2 are

zero and can be ignored. Terms with similar coefficients can

be clubbed as well. Hence, it is an optimal algorithm that

requires only 24 real multiplications and 64 real additions and

hence reduces multiplicative complexity.

B. Quaternion IP

The multiplication of two dual quaternions in case of

Quaternion IP is as follows: If Q and P are two dual

quaternions of the form,

 Q = qr1 + qd1 (16)

 P = qr2 + qd2 (17)

then, the multiplication of these dual quaternions can be

written as,

 QP = qr1 qr2 +ϵ(qr1qd1 + qr2 qd1) (18)

Hence instead of performing dual quaternion multiplication

directly, the alternate approach is to use the logic of

quaternion as mentioned in (18).

C. Vivado Simulation

These IPs are designed in Verilog HDL and have been

simulated using Vivado. The IP contains its own floating-

point unit to perform addition, multiplication and subtraction

which is necessary for dual quaternion multiplication. The

input and output operands of these IPs are fixed to single

precision IEEE 754 format which are of 32-bit floating point

numbers. The multiplication outputs as a result of simulation

in Vivado for two specific user given inputs opa, opb which

are the two dual quaternion input of 8 elements each and opc

is the output result of dual quaternion multiplication have

been depicted in Fig.1.

Figure 1. Vivado output for Dual Quaternion multiplication

Figure 2. Vivado output for Quaternion multiplication

International Journal of Research and Scientific Innovation (IJRSI) |Volume IX, Issue V, May 2022|ISSN 2321-2705

www.rsisinternational.org Page 79

The Fig.2 depicts the quaternion multiplication, where opa

and opb are two quaternion inputs of 4 elements each with opc

representing the quaternion output.

Results obtained in resource utilization are for the Artix A7

FPGA board. While comparing the three cases, it can be

observed that only LUT (Look Up Table), FF (Flip-flop) and

DSP (Digital Signal Processors) see a significant increase

whilst utilization of the other resources remains relatively

unchanged. The increase, however, is more in the case of the

dual quaternion IP. It is the same scenario in the case of power

utilization where the dual- quaternion IP depicts a 21 %

increase whilst the quaternion IP is just 4.5% more than the

standalone SoC’s utilization.

IV. INTEGRATION

Involves integrating the designed hardware accelerator with

the processor core [12]. The IP is considered as a slave and

mapped to the memory on the pre-existing SoC core which is

our master. The ‘Byte-RAM’ is a memory space that helps to

mediate the transfer of data between the Parashu Core and the

IP abiding by the Axi-4 interconnect protocol. The IP is

instantiated from the SoC’s top module, following which the

newly compiled SoC is dumped on the FPGA to further

application design and testing.

Figure 3. Integration

V. SIMULATION RESULTS

A. Quaternion vs Dual Quaternion IP

For this section comparison is made with respect to three

parameters i.e. performance (in terms of execution times

expressed in clock cycles), resource utilization and power

utilization between the standalone SoC two proposed

solutions i.e. Quaternion IP and Dual Quaternion IP outputs

for which have been obtained within Vivado. For the

performance analysis, a program for dual quaternion

multiplication has been executed for 100 iterations and the

result from an internal timer counter (that increments every

256 clock cycles) is averaged to obtain the final value of

execution time.

Table Ⅱ. Resource Utilization

Parashu

Core
Parashu Core +
Quaternion IP

Parashu Core +

Dual Quaternion

IP

LUT (%) 47.92 61.97 89.99

LUTRAM (%) 5.12 5.12 5.12

FF (%) 25.99 30.18 37.54

BRAM (%) 4.44 4.44 4.44

DSP (%) 1.67 15 41.67

IO (%) 60.95 62.86 62.86

MMCM (%) 33.33 33.33 33.33

PLL (%) 16.67 16.67 16.67

Table Ⅲ. Comparison Of Results

 Parashu Core
Parashu Core
+ Quaternion

IP

Parashu Core +
Dual Quaternion

IP

Power
Consumption (W)

0.909 0.95 1.1017

Performance

(Clock Cycles)
3,05,664 39,680 10,240

Results obtained in resource utilization are for the Artix A7

100t FPGA board. While comparing the three cases, it can be

observed,as per Table II that only LUT (Look Up Table), FF

(Flip-flop) and DSP (Digital Signal Processors) see a

significant increase whilst utilization of the other resources

present on the FPGA remains relatively unchanged.The

LUT,FF and DSP increase w.r.t the standalone Parashu core

is observed to be just 14.05%, 4.19% and 13.33% respectively

in the case of the quaternion IP whereas 42.07%, 11.55% and

40% respectively in the case of the dual quaternion IP. It is the

same scenario in the case of power utilization where the dual

quaternion IP depicts a 21 % increase whilst the quaternion IP

is just 4.5% more than the standalone SoC’s utilization as

depicted above in Table III.

B. Dual Quaternion IP

If we prioritize performance gain to be the primary

objective of this module, we consider our dual quaternion IP

itself for the following analysis. The clock cycles taken are

obtained with the help of an internal timer counter in the SoC

which increments every 256 clock cycles. Hence the obtained

value is multiplied by 256 to get the final clock cycle count.

Here we analyze the 4 CPU intensive functions i.e.

Multiplication, Translation, Rotation and Transformation all

of which show a respectable decrease in execution time

represented by clock cycles. As tabulated below, speedup

ranging from 1.55 to 29.85 is obtained, hence justifying the

case for our hardware accelerator in applications involving

Dual Quaternions.

International Journal of Research and Scientific Innovation (IJRSI) |Volume IX, Issue V, May 2022|ISSN 2321-2705

www.rsisinternational.org Page 80

Table Ⅳ. Dual Quaternion Operations

Operations

Standalone SoC

(Clock Cycles) –
T1

SoC integrated
with DQ IP

(Clock Cycles)

– T2

Speedup

(T1/T2)

DQ Multiplication 3,05,664 10,240 29.85

Translation 4,82,816 37,120 13.01

Rotation 13,71,136 8,85,248 1.55

Transformation 16,61,696 9,06,752 1.83

C. FPU Argument

An additional scenario tested is to check whether the IP fares

better with its inbuilt FPU unit or would its reliance on the

FPU unit of the SoC be the better alternative. The test has

been conducted using Verilator which is a cycle accurate

RISC- V compiler since the testing required us to use the C-

class ‘Parashu’ SoC which belongs to a higher tier with the

support for an FPU unit is unfortunately not testable on our

FPGA board.

Table Ⅴ. Dual Quaternion Operations

Operation
Standalone SoC

(Clock Cycles)

SoC integrated with

DQ IP

DQ Multiplication 81,408 1,79,712

It is observed that the hardware accelerator performs better

standalone than if it were to be relying on the SoC’s inbuilt

FPU unit since it does not have to rely on the data bus for

FPU operations, hence mitigating the communication delay.

Additionally, this means that the IP is universally compatible

with all SoCs and does not have a prerequisite of an FPU unit

for attaining optimal performance.

VI. IMPLEMENTATION TRADE OFFS

 As discussed earlier there is a place for both our IP’ s to

accelerate dual quaternion applications. The dual quaternion

IP is better when it comes to raw performance. However, if

resource utilization and power are a concern then the

quaternion IP is the better alternative. Not to mention the

quaternion IP is applicable in both instances of quaternion and

dual quaternion applications but the dual quaternion IP is

restricted to the latter. The better performance and higher

resource utilization of Dual quaternion compared with

quaternion logic is clearly visible in Fig.4 and Fig 5.

Figure 4. Comparison of Clock cycles

Figure 5. Comparison of Resource Utilization

 VI. PRACTICAL IMPLEMENTATION

Dual Quaternion applications such as translation, rotation

and transformation are visualized using rviz, which is a 3D

visualization tool of ROS application [13]. The inputs are

given in the form of [x, y, z, roll, pitch, yaw] where x, y, z

indicates the amount of units it needs to move in x, y, z

directions respectively and roll, pitch, yaw indicates the

angles it needs to rotate about the x, y, z axes.

Figure 6. Terminal output for transformation

Figure 7. Visualization of transformation using rViz

The designed hardware is dumped onto the FPGA and

various robotics applications have been tested [14]. The 2D

bot considers its initial position as origin and as the bot moves

forward, depending on the wheel movement and also the

angle by which the wheel is rotated, dual quaternion is

obtained, this process takes place in a loop and simultaneously

updates the previous dual quaternion. In Fig.8, the left image

indicates the path the bot needs to follow to reach the

destination [15]. The IP does support 3D as shown in

simulation and can be verified by twirling the robot manually

in space and visualizing the same in ROS.

International Journal of Research and Scientific Innovation (IJRSI) |Volume IX, Issue V, May 2022|ISSN 2321-2705

www.rsisinternational.org Page 81

Fig 8. 2D Application for Transformation

VII.CONCLUSIONS

The primary objective of accelerating the dual quaternion

applications with an IP has been achieved. The trade-off

between performance and resource utilization has been

discussed with the proposed solutions of our dual quaternion

and quaternion IP respectively. Additionally, the proposed IP

design is universally compatible with all SoC’s and does not

have a prerequisite of an FPU unit for attaining optimal

performance. The practical implementation in the case of the

robot for operations like state estimation, rotation, translation

and transformation conveys that the proposed IP is industry

ready for implementation as well. Although simulated in 3D,

the practical implementation with the robot was restricted to

work in only 2 dimensions. The future scope of the IP would

be to test on a 3D application like a drone or a robotic arm.

ACKNOWLEDGMENT

We express our profound gratitude to Vishwas N.S,

Research associate at PESU cRAIS (Centre for Robotics,

Automation and Intelligent Systems) who has given valuable

suggestions and guidance throughout the project.

REFERENCES

[1]. G. Zhang, K. Zhao, B. Wu, Y. Sun, and F. Liang, A RISC-V based

hardware accelerator designed for Yolo object detection system,
2019.

[2]. W. Wang, B. Jungk, J. Walde, S. Deng, N. Gupta, J. Szefer, and R.

Niederhagen, “XMSS Hardware Accelerators for RISC-V” XMSS
and Embedded Systems, 2020.

[3]. N. Gala, G. Madhusudan Gs, S. Paul, M. Anmol, V. Arjun, and

Kamakoti, “SHAKTI: An Open-Source Processor Ecosystem”,
Advanced Computing and Communications, 2018.

[4]. S. D. TEAM, SHAKTI DEVELOPMENT BOARD USER

MANUAL, 2019.

[5]. G. Q. J, M. J. P. Varshney A, and C. C. F, Double quaternions for

motion interpolation, American Society of Mechanical Engineers,

September 1998.
[6]. A. Perez-Gracia and M. J, “Dual Quaternion Synthesis of

Constrained Robotic Systems,” Journal of Mechanical Design - J

MECH DESIGN, 2003.
[7]. M. Gouasmi, “Robot Kinematics, using Dual Quaternions,” IAES

International Journal of Robotics and Automation (IJRA), 2012.

[8]. W. M. Cariow A, Cariowa G, “An FPGA-oriented fully parallel
algorithm for multiplying dual quaternions,” 2015.

[9]. P. A., “Fixed-Point Arithmetic Unit with a Scaling Mechanism for
FPGA-Based Embedded Systems,” Electronics 2021, 2021.

[10]. L. Kavan, S. Collins, C. O’Sullivan, and J. Zara, “Dual

quaternions for rigid transformation blending,” pp. 39–48, 2006.

[11]. K. B, A beginners guide to dual-quaternions: What they are, how

they work, and how to use them for 3D character hierarchies.,

2012.

[12]. B. B. Akshatha V Murthy, B Rajeshwari, SOC for image
processing using SIFT accelerator, 2019.

[13]. J. Y. I. L. F. C. Figueredo, B. V. Adorno and G. A. Borges, Robust

kinematic control of manipulator robots using dual quaternion
representation, 2013.

[14]. S. Kirubaharan, J. P, and W. D, Low Power FPGA-based

Hardware Accelerator for Autonomous Navigation of Mobile
Robots.

[15]. J. Y. J. Lee, H. Chen and H. Kim, RISC-V FPGA Platform

Toward ROS-Based Robotics Application, 2020.

