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Abstract— In this work, a hardware accelerator has been 

developed for a RISC-V processor. The ‘Parashu’ Shakti 

processor is the SoC of choice for application testing and 

development. The IP is designed to speed up applications 

involving dual quaternion operations. Our module primarily aids 

dual quaternion multiplication which further helps with other 

complex operations like translation, rotation and transformation. 

Two solutions have been proposed for the same, i.e. either a 

quaternion IP if power and resource utilization is a concern, or a 

dual quaternion IP if performance gain is the primary objective. 

The latter is however at the expense of relatively more resource 

utilization. The former IP takes longer execution time to perform 

the same task but is more versatile since it can be used in 

applications involving both quaternion and dual quaternion 

operations.  

Keywords— RISC-V, Dual Quaternion, Shakti Processor, 

Hardware Accelerator, Robotics 

I.INTRODUCTION 

n modern society, RISC-V is an emerging technology and is 

rapidly developing as it is an open ISA that offers stability, 

scalability and security. RISC-V is an open standard 

instruction set architecture (ISA) based on established reduced 

instruction set computer (RISC) principles. The dynamic and 

modular aspects make RISC-V ISA a compelling choice for 

IP development[1],[2]. The SHAKTI Processor Program, 

based on the RISC-V ISA, was started as an academic 

initiative back in 2014 by IIT Madras. The monopoly of a 

handful of companies in the processor market and the growing 

demand for customizable SoC’s and ASIC’s (Application 

Specific Integrated Chips) was the motivation behind the 

development of the open-source processor ecosystem. 

Dual quaternion is a combination of Quaternions and dual 

number theory ,a tool for expressing and analyzing the 

physical properties of rigid bodies. It is considered to be better 

than the conventional Cartesian coordinate system since it is 

singularity free, avoids Gimbal lock(loss of a degree of 

freedom in a rotation system when two axis of rotation 

coincide), yields the shortest interpolation path for the system 

and it can formulate the problem more concisely with greater 

precision, since 4 states per quaternion are used to represent a 

3- dimensional space. 

II. RELATED WORKS 

The Shakti processor ecosystem offers a plethora of 

processors from basic ones like E and C class to multi core 

one like M and S class. The E class SoC i.e. Parashu core has 

been selected for our application and it follows a 3 stage in – 

order execution pipeline [3]. There is a wide range of tools 

provided for application development including Shakti SDK 

(Software Development Kits), Platform IDE extension for 

Visual Studio and Arduino IDE as well. Development boards 

supported for these processors are the Artix 7 35T and Artix 7 

100T board [4]. 

Dual quaternions are a singularity free and unambiguous 

alternative to the conventional Cartesian coordinate system 

which unify the translation and rotation into a single state [5] 

widely employed in modern day robotics [6]. This paper sheds 

the role of Dual quaternions in the field of kinematics for key 

operations like rotation, translation and transformation [7] 

where we have observed the prominent operation to be 

multiplication. We have accelerated the same by utilizing an 

optimized algorithm which performs 24 real multiplications 

and 64 real additions down from the conventional algorithm 

which involves 64 real multiplications and 56 real additions 

[8]. This multiplication IP relies on a 32 bit FPU unit that was 

designed as well [9]. Today, dual quaternion finds its 

application in the field of motion graphics as well, since it 

fares better both in terms of accuracy and efficiency in 

operations like skinning and blending than alternative 

algorithms like spherical blend and log-matrix respectively 

[10]. 

III. DESIGN AND IMPLEMENTATION OF HARDWARE 

ACCELERATOR 

The hardware accelerator has been designed majorly to 

multiply two dual quaternions. With this motive, two types of 

IPs have been designed namely, Dual quaternion IP and 

Quaternion IP. As mentioned in [11],the dual quaternion can 

be represented as 

q = qr + qdϵ   (1) 

    Where qr and qd are real and dual parts and each quaternion 

q can be expressed as, 

qr= r  (2) 

qd= (3) 

    Where r is the quaternion representing the rotation and t is 

the quaternion describing the translation. Each quaternion is 

of the form, 

q(w,v) = w + (xi + yj+ zk)    (4) 

I 
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where w, x, y and z are the numerical values and i, j and k are 

the imaginary components. The designed hardware 

accelerators multiply the two dual quaternions by following 

the below-mentioned methods. 

A.Dual quaternion IP 

The multiplication in case of dual quaternion IP is as 

mentioned in the literature [11]. If Q and P are two dual 

quaternions of 8 elements each represented as, 

Q = qr1 + qd1   (5) 

    P = qr2 + qd2   (6) 

    then, the multiplication of these dual quaternions can be 

written as, 

                                      T = Q.P              (7) 

Table I. Dual Quaternion Multiplication Table  

Q.P P.1 P.i P.j P.k P.ϵi P.ϵj P.ϵk P.ϵ 

Q.1 1 i J K ϵi ϵj ϵk ϵ 

Q.i i -1 K -j -ϵ ϵk -ϵj ϵi 

Q.j j -k -1 I -ϵk -ϵ ϵi ϵj 

Q.k k J -i -1 ϵj -ϵi -ϵ ϵk 

Q.ϵi ϵi -ϵ ϵk -ϵj 0 0 0 0 

Q.ϵj ϵj -ϵk -ϵ ϵi 0 0 0 0 

Q.ϵk ϵk ϵj -ϵi -ϵ 0 0 0 0 

Q.ϵ ϵ ϵi -ϵj -ϵk 0 0 0 0 

The final dual quaternion multiplication output T contains 8 

elements where the, Real quaternion component of the 

resulting dual quaternion is obtained by: 

T[0] = P[0]∗Q[0]−P[1]∗Q[1]−P[2]∗Q[2]−P[3]∗Q[3] (8) 

T[1] = P[0]∗Q[1]+P[1]∗Q[0]+P[2]∗Q[3]−P[3]∗Q[2] (9) 

T[2] = P[0]∗Q[2]+P[2]∗Q[0]−P[1]∗Q[3]+P[3]∗Q[1] (10) 

T[3] = P[0]∗Q[3]+P[3]∗Q[0]+P[1]∗Q[2]−P[2]∗Q[1]  (11) 

Dual quaternion component of the resulting dual quaternion

 is obtained by: 

T[4] = P[4] ∗ Q[0] + P[0] ∗ Q[4] + P[7] ∗ Q[1] + P[1] ∗ Q[7]− 

P[6] ∗ Q[2] + P[2] ∗ Q[6] + P[5] ∗ Q[3] − P[3] ∗ Q[5] (12) 

T[5] = P[5] ∗ Q[0] + P[0] ∗ Q[5] + P[6] ∗ Q[1] − P[1] ∗ Q[6]+ 

P[7] ∗ Q[2] + P[2] ∗ Q[7] − P[4] ∗ Q[3] + P[3] ∗ Q[4] (13) 

T[6] = P[6] ∗ Q[0] + P[0] ∗ Q[6] − P[5] ∗ Q[1] + P[1] ∗ Q[5]+ 

P[4] ∗ Q[2] − P[2] ∗ Q[4] + P[7] ∗ Q[3] + P[3] ∗ Q[7] (14) 

T[7] = P[7] ∗ Q[0] + P[0] ∗ Q[7] − P[1] ∗ Q[4] − P[4] ∗ Q[1]− 

P[2] ∗ Q[5] − P[5] ∗ Q[2] − P[3] ∗ Q[6] − P[6] ∗ Q[3] (15) 

As shown in TABLE 1, some terms with coefficient ϵ2 are 

zero and can be ignored. Terms with similar coefficients can 

be clubbed as well. Hence, it is an optimal algorithm that 

requires only 24 real multiplications and 64 real additions and 

hence reduces multiplicative complexity. 

B. Quaternion IP 

The multiplication of two dual quaternions in case of 

Quaternion IP is as follows: If Q and P are two dual 

quaternions of the form,  

 Q = qr1 + qd1 (16) 

 P = qr2 + qd2 (17) 

then, the multiplication of these dual quaternions can be 

written as, 

                              QP = qr1 qr2 +ϵ(qr1qd1 + qr2 qd1)            (18) 

Hence instead of performing dual quaternion multiplication 

directly, the alternate approach is to use the logic of 

quaternion as mentioned in (18). 

C. Vivado Simulation  

These IPs are designed in Verilog HDL and have been 

simulated using Vivado. The IP contains its own floating-

point unit to perform addition, multiplication and subtraction 

which is necessary for dual quaternion multiplication. The 

input and output operands of these IPs are fixed to single 

precision IEEE 754 format which are of 32-bit floating point 

numbers. The multiplication outputs as a result of simulation 

in Vivado for two specific user given inputs opa, opb which 

are the two dual quaternion input of 8 elements each and opc 

is the output result of dual quaternion multiplication have 

been depicted in Fig.1. 

 

Figure 1. Vivado output for Dual Quaternion multiplication 

 

Figure 2. Vivado output for Quaternion multiplication 
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The Fig.2 depicts the quaternion multiplication, where opa 

and opb are two quaternion inputs of 4 elements each with opc 

representing the quaternion output. 

Results obtained in resource utilization are for the Artix A7 

FPGA board. While comparing the three cases, it can be 

observed that only LUT (Look Up Table), FF (Flip-flop) and 

DSP (Digital Signal Processors) see a significant increase 

whilst utilization of the other resources remains relatively 

unchanged. The increase, however, is more in the case of the 

dual quaternion IP. It is the same scenario in the case of power 

utilization where the dual- quaternion IP depicts a 21 % 

increase whilst the quaternion IP is just 4.5% more than the 

standalone SoC’s utilization. 

IV. INTEGRATION 

Involves integrating the designed hardware accelerator with 

the processor core [12]. The IP is considered as a slave and 

mapped to the memory on the pre-existing SoC core which is 

our master. The ‘Byte-RAM’ is a memory space that helps to 

mediate the transfer of data between the Parashu Core and the 

IP abiding by the Axi-4 interconnect protocol. The IP is 

instantiated from the SoC’s top module, following which the 

newly compiled SoC is dumped on the FPGA to further 

application design and testing. 

 

Figure 3. Integration 

V. SIMULATION RESULTS 

A. Quaternion vs Dual Quaternion IP 

For this section comparison is made with respect to three 

parameters i.e. performance (in terms of execution times 

expressed in clock cycles), resource utilization and power 

utilization between the standalone SoC two proposed 

solutions i.e. Quaternion IP and Dual Quaternion IP outputs 

for which have been obtained within Vivado. For the 

performance analysis, a program for dual quaternion 

multiplication has been executed for 100 iterations and the 

result from an internal timer counter (that increments every 

256 clock cycles) is averaged to obtain the final value of 

execution time.  

Table Ⅱ. Resource Utilization 

 
Parashu 

Core 
Parashu Core + 
Quaternion IP 

Parashu Core + 

Dual Quaternion 

IP 

LUT (%) 47.92 61.97 89.99 

LUTRAM (%) 5.12 5.12 5.12 

FF (%) 25.99 30.18 37.54 

BRAM (%) 4.44 4.44 4.44 

DSP (%) 1.67 15 41.67 

IO (%) 60.95 62.86 62.86 

MMCM (%) 33.33 33.33 33.33 

PLL (%) 16.67 16.67 16.67 

Table Ⅲ. Comparison Of Results 

 Parashu Core 
Parashu Core 
+ Quaternion 

IP 

Parashu Core + 
Dual Quaternion 

IP 

Power 
Consumption (W) 

0.909 0.95 1.1017 

Performance 

(Clock Cycles) 
3,05,664 39,680 10,240 

Results obtained in resource utilization are for the Artix A7 

100t FPGA board. While comparing the three cases, it can be 

observed,as per Table II that only LUT (Look Up Table), FF 

(Flip-flop) and DSP (Digital Signal Processors) see a 

significant increase whilst utilization of the other resources 

present on the FPGA remains relatively unchanged.The  

LUT,FF and DSP increase w.r.t  the standalone Parashu core 

is observed to be just 14.05%, 4.19% and 13.33% respectively 

in the case of the quaternion IP whereas 42.07%, 11.55% and 

40% respectively in the case of the dual quaternion IP. It is the 

same scenario in the case of power utilization where the dual 

quaternion IP depicts a 21 % increase whilst the quaternion IP 

is just 4.5% more than the standalone SoC’s utilization as 

depicted above in Table III. 

B. Dual Quaternion IP  

If we prioritize performance gain to be the primary 

objective of this module, we consider our dual quaternion IP 

itself for the following analysis. The clock cycles taken are 

obtained with the help of an internal timer counter in the SoC 

which increments every 256 clock cycles. Hence the obtained 

value is multiplied by 256 to get the final clock cycle count. 

Here we analyze the 4 CPU intensive functions i.e. 

Multiplication, Translation, Rotation and Transformation all 

of which show a respectable decrease in execution time 

represented by clock cycles. As tabulated below, speedup 

ranging from 1.55 to 29.85 is obtained, hence justifying the 

case for our hardware accelerator in applications involving 

Dual Quaternions. 
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Table Ⅳ. Dual Quaternion Operations 

Operations 

Standalone SoC 

(Clock Cycles) – 
T1 

SoC integrated 
with DQ IP 

(Clock Cycles) 

– T2 

Speedup 

(T1/T2) 

DQ Multiplication 3,05,664 10,240 29.85 

Translation 4,82,816 37,120 13.01 

Rotation 13,71,136 8,85,248 1.55 

Transformation 16,61,696 9,06,752 1.83 

C. FPU Argument  

An additional scenario tested is to check whether the IP fares 

better with its inbuilt FPU unit or would its reliance on the 

FPU unit of the SoC be the better alternative. The test has 

been conducted using Verilator which is a cycle accurate 

RISC- V compiler since the testing required us to use the C-

class ‘Parashu’ SoC which belongs to a higher tier with the 

support for an FPU unit is unfortunately not testable on our 

FPGA board.  

Table Ⅴ. Dual Quaternion Operations 

Operation 
Standalone SoC 

(Clock Cycles) 

SoC integrated with 

DQ IP 

DQ Multiplication 81,408 1,79,712 

It is observed that the hardware accelerator performs better 

standalone than if it were to be relying on the SoC’s inbuilt 

FPU unit since it does not have to rely on the data bus for 

FPU operations, hence mitigating the communication delay. 

Additionally, this means that the IP is universally compatible 

with all SoCs and does not have a prerequisite of an FPU unit 

for attaining optimal performance. 

VI. IMPLEMENTATION TRADE OFFS 

   As discussed earlier there is a place for both our IP’ s to 

accelerate dual quaternion applications. The dual quaternion 

IP is better when it comes to raw performance. However, if 

resource utilization and power are a concern then the 

quaternion IP is the better alternative. Not to mention the 

quaternion IP is applicable in both instances of quaternion and 

dual quaternion applications but the dual quaternion IP is 

restricted to the latter. The better performance and higher 

resource utilization of Dual quaternion compared with 

quaternion logic is clearly visible in Fig.4 and Fig 5. 

 

Figure 4. Comparison of Clock cycles 

 

Figure 5. Comparison of Resource Utilization 

        VI. PRACTICAL IMPLEMENTATION 

Dual Quaternion applications such as translation, rotation 

and transformation are visualized using rviz, which is a 3D 

visualization tool of ROS application [13]. The inputs are 

given in the form of [x, y, z, roll, pitch, yaw] where x, y, z 

indicates the amount of units it needs to move in x, y, z 

directions respectively and roll, pitch, yaw indicates the 

angles it needs to rotate about the x, y, z axes. 

 

Figure 6. Terminal output for transformation 

 

Figure 7. Visualization of transformation using rViz 

The designed hardware is dumped onto the FPGA and 

various robotics applications have been tested [14]. The 2D 

bot considers its initial position as origin and as the bot moves 

forward, depending on the wheel movement and also the 

angle by which the wheel is rotated, dual quaternion is 

obtained, this process takes place in a loop and simultaneously 

updates the previous dual quaternion. In Fig.8, the left image 

indicates the path the bot needs to follow to reach the 

destination [15]. The IP does support 3D as shown in 

simulation and can be verified by twirling the robot manually 

in space and visualizing the same in ROS. 
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Fig 8. 2D Application for Transformation 

VII.CONCLUSIONS 

The primary objective of accelerating the dual quaternion 

applications with an IP has been achieved. The trade-off 

between performance and resource utilization has been 

discussed with the proposed solutions of our dual quaternion 

and quaternion IP respectively. Additionally, the proposed IP 

design is universally compatible with all SoC’s and does not 

have a prerequisite of an FPU unit for attaining optimal 

performance. The practical implementation in the case of the 

robot for operations like state estimation, rotation, translation 

and transformation conveys that the proposed IP is industry 

ready for implementation as well. Although simulated in 3D, 

the practical implementation with the robot was restricted to 

work in only 2 dimensions. The future scope of the IP would 

be to test on a 3D application like a drone or a robotic arm.   
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