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ABSTRACT 

 
This study investigates the analytical solution of quadratic optimal control problems (OCPs) constrained by 

ordinary differential equations (ODEs) with real and coefficients. The formulation is based on the application 

of first-order optimality conditions to the Hamiltonian function, which yield a coupled system of first-order 

differential equations representing the necessary conditions for optimality. The resulting system is solved 

analytically using the method of eigenvalue decomposition and state transformation to determine the optimal 

state, control, and adjoint variables. The analytical procedure is illustrated through two examples of quadratic 

OCPs, confirming the effectiveness and accuracy of the developed method in deriving exact optimal solutions.   

INTRODUCTION  

 Optimization is the process of determining the best possible outcome under given conditions, either by 

minimizing effort or maximizing desired benefits. It provides the mathematical foundation for decision-making 

in engineering, science, and economics by expressing objectives as functions of decision variables. The 

development of optimization theory has profoundly influenced control theory, operations research, and 

computational mathematics. In particular, optimal control theory extends classical optimization to dynamical 

systems, seeking control and state trajectories that minimize an objective function subject to system dynamics 

and constraints. The growing demand for efficient computational strategies has led to the emergence of 

numerical methods such as the penalty function, Lagrangian, and conjugate gradient approaches for solving 

constrained optimization problems [13, 14].  

Over the years, extensive studies have been carried out to develop efficient algorithms for constrained and 

unconstrained optimization problems [5-9, 11, 15, 16]. Naidu [10] provided a rigorous foundation for optimal 

control systems and discussed analytical and numerical techniques for solving such problems. [1] presented a 

method for solving optimal control problems with mixed constraints by applying the first-order optimality 

conditions derived from the Hamiltonian function. The resulting system of non-homogeneous first order ODEs 

was then solved using the fundamental matrix approach. Similarly, in [2], the analytical solutions of optimal 

control problems governed by ODEs were investigated. The study employed the first-order optimality 

conditions of the Hamiltonian function to derive and solve the associated system of first-order ODEs, leading 

to the determination of the optimal state, control, and adjoint variables, as well as the optimal objective value.  

Quadratic optimal control problems constrained by ODEs with real and vector-matrix coefficients were 

considered. The analytical formulation is derived by applying first-order optimality conditions to the 

Hamiltonian function, leading to a system of first-order ODEs solved using a state transformation approach. 

For numerical implementation, the objective functional is discretized via Simpson’s one-third rule, while the 

system dynamics are approximated using a fifth-order implicit integration scheme. The resulting discretized 

problem is transformed into an unconstrained optimization model using the Augmented Lagrangian Method 

and solved through the Conjugate Gradient Method (CGM) and FICO Xpress Mosel. Comparative analysis 

demonstrates that FICO Xpress Mosel achieves faster convergence and higher numerical stability, particularly 

for large-scale problems, highlighting its efficiency in solving complex quadratic OCPs [3, 12].  
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The study focuses on a semi-analytical approach for solving a generalized quadratic optimal control problem 

governed by ODEs. The analytical formulation is derived by applying the first-order optimality conditions to 

the Hamiltonian function, which provide the necessary conditions for optimality. To solve the resulting general 

Riccati differential equation, the Adomian Decomposition Method (ADM) is employed, representing the 

nonlinear system as an infinite series that converges toward the exact solution. This procedure yields the 

optimal state, control, and adjoint variables, from which the optimal value of the objective functional is 

determined. The effectiveness of the proposed method is demonstrated through two illustrative examples of 

optimal control problems constrained by ODEs [4].  

METHODOLOGY  

 In this section, optimal control problems constrained by ODEs with mixed constraints and real coefficients are 

considered. The necessary conditions for this class of optimal control problems considered are derived. This 

leads to the analytical solutions of the optimal control problems constrained by ODEs with mixed constraints 

and real co-efficient.  

In the framework of optimal control theory, we consider a control system aimed at finding an admissible 

control 𝑢(𝑡) and its corresponding state trajectory 𝑥(𝑡) that minimize a given cost functional. When only 

equality restrictions are present, the problem can be formulated as   

 Minimize (𝑥, 𝑢, 𝑡), 

    

 subjectto ℎ(𝑥, 𝑢, 𝑡) = 0, 

 where 𝑓 denotes the performance index and ℎ represents the set of equality constraints.  

If inequality conditions are imposed, the optimal control problem is expressed as   

(2.1)  

 Minimize 𝑓(𝑥, 𝑢, 𝑡), 

    

 subjectto 𝑔(𝑥, 𝑢, 𝑡) ≤ 0, (2.2)  

 where 𝑔 is a vector function specifying the inequality restrictions that define the feasible region.  

By combining (2.1) and (2.2), we obtain the general mixed-constrained optimal control problem:   

 Minimize (𝑥, 𝑢, 𝑡), 

   subjectto ℎ(𝑥, 𝑢, 𝑡) = 0,  (2.3)  

(𝑥, 𝑢, 𝑡) ≤ 0, 

 where   

   𝑓: 𝐑𝑛 × 𝐑𝑚 × 𝐑 → 𝐑,    ℎ: 𝐑𝑛 × 𝐑𝑚 × 𝐑 → 𝐑𝑝,    𝑔: 𝐑𝑛 × 𝐑𝑚 × 𝐑 → 𝐑𝑟,  

and 𝑚 ≤ 𝑛, 𝑝 ≤ 𝑛. The components of ℎ and 𝑔 are given by ℎ1, ℎ2, … , ℎ𝑝 and 𝑔1, 𝑔2, … , 𝑔𝑟, respectively.  

To handle the inequality constraints more conveniently, the mixed-constrained problem in (2.3) can be 

transformed into an equality-constrained formulation by introducing a vector of nonnegative auxiliary 

variables  

𝑧 = (𝑧1, 𝑧2, … , 𝑧𝑟). The equivalent problem becomes   

 Minimize (𝑥, 𝑢, 𝑡), 

   subjectto ℎ𝑖(𝑥, 𝑢, 𝑡) = 0,    𝑖 = 1,2, … , 𝑝,   (2.4)  

𝑔(𝑥, 𝑢, 𝑡) + 𝑧𝑗2(𝑥, 𝑢, 𝑡) = 0,    𝑗 = 1,2, … , 𝑟, 
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where the squared slack variables 𝑧𝑗2  convert inequalities into differentiable equalities while preserving  

feasibility.  

2.1 Necessary Conditions for a General Optimal Control Problems with Mixed Constraints  

 The general formulation of an optimal control problem involving both equality and inequality constraints can 

be expressed as   

 Minimize    (𝑥, 𝑢) = (𝑥, 𝑢, 𝑡) 𝑑𝑡, 

   subjectto    𝑥 (𝑡) = ℎ(𝑥, 𝑢, 𝑡),    𝑥(0) = 𝑥0,   (2.5)  

(𝑥, 𝑢, 𝑡) ≤ 0,    𝑡 ∈ [0, 𝑇], 

 where 𝑥(𝑡) ∈ 𝐑𝑛 and 𝑢(𝑡) ∈ 𝐑𝑚. The functions 𝑓: 𝐑𝑛 × 𝐑𝑚 × 𝐑 → 𝐑, ℎ: 𝐑𝑛 × 𝐑𝑚 × 𝐑 → 𝐑𝑝, and 𝑔: 𝐑𝑛 × 𝐑𝑚 × 

𝐑 → 𝐑𝑟 are assumed to be continuously differentiable, and 𝑇 represents the terminal time of the process.  

The Hamiltonian function associated with (2.5) is defined as   

   (𝑥, 𝑢, 𝜆, 𝑡) = 𝑓(𝑥, 𝑢, 𝑡) + 𝜆 ℎ(𝑥, 𝑢, 𝑡),  (2.6)  

 where 𝐻: 𝐑𝑛 × 𝐑𝑚 × 𝐑𝑛 × 𝐑 → 𝐑, and 𝜆(𝑡) ∈ 𝐑𝑛 denotes the adjoint (or costate) variable.  

To incorporate the inequality constraints into the formulation, the Lagrangian function is extended as   

   (𝑥, 𝑢, 𝜆, 𝜇, 𝑡) = 𝐻(𝑥, 𝑢, 𝜆, 𝑡) + 𝜇 𝑔(𝑥, 𝑢, 𝑡),  (2.7)  

 where 𝜇(𝑡) ∈ 𝐑𝑞  is the Lagrange multiplier corresponding to the inequality constraint and satisfies the 

complementary slackness conditions   

   𝜇 ≥ 0,        𝜇 (𝑥, 𝑢, 𝑡) = 0.  (2.8)  

Applying the Euler–Lagrange principle to the Lagrangian in (2.7) gives   

 𝜕𝐿 𝑑 𝜕𝐿 

   − ( ) = 0,                                                           (2.9)  
 𝜕𝑥 𝑑𝑡 𝜕𝑥  

 𝜕𝐿 𝑑 𝜕𝐿 

   − ( ) = 0,                        (2.10)  
𝜕𝑢 𝑑𝑡 𝜕𝑢  𝜕𝐿 𝑑 𝜕𝐿 

   𝜕𝜆 − 𝑑𝑡 (𝜕𝜆  ) = 0,                        (2.11)  

 𝜕𝐿 𝑑 𝜕𝐿 

   − ( ) = 0.                        (2.12)  
 𝜕𝜇 𝑑𝑡 𝜕𝜇  

Substituting (2.7) into (2.9)–(2.12) yields    𝜕𝑓 + 𝜆 𝜕ℎ + 𝜇 𝜕𝑔 + 𝜆  = 0,                      (2.13) 𝜕𝑥 𝜕𝑥 𝜕𝑥 

   𝜕𝑓 + 𝜆 𝜕ℎ + 𝜇 𝜕𝑔 = 0,                       (2.14)  
𝜕𝑢 𝜕𝑢 𝜕𝑢 𝜕𝑓 𝜕𝜆 𝜕𝑔 

   + ℎ  + 𝜇  = 0,                       (2.15)  
𝜕𝜆 𝜕𝜆 𝜕𝜆 𝜕𝑓 𝜕ℎ 𝜕𝜇 

   + 𝜆  + 𝑔  = 0.                       (2.16)  
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 𝜕𝜇 𝜕𝜇 𝜕𝜇 

From these expressions, the necessary optimality conditions are obtained as   

 𝜕𝐻 𝜕𝑔 

 𝜕𝜇 𝜕𝜇 𝜕𝜇 

Equations (2.17) and (2.19) form a system of first-order ODEs that can be solved simultaneously once suitable 

boundary conditions are imposed. When only one boundary condition is specified, the remaining one is 

obtained through the transversality (free-end) condition given by   

𝜕𝐻 

    = 0    orequivalently    (𝑇) = 0,         (Transversality Condition.  (2.21)  
𝜕𝑥  

For a solution to be optimal, all the necessary conditions defined in (2.17)–(2.21) must hold simultaneously. If 

any of these are violated, the control and state trajectories are not optimal. The state and adjoint (costate) 

equations are differential (dynamic) in nature, whereas the control equation is algebraic (static). Together, these 

equations form a two-point boundary value problem: the state equation evolves forward in time, while the 

costate equation evolves backward. Such problems often require iterative numerical procedures for their 

resolution, which typically lead to open-loop optimal control laws.  

2.2 Analytical Solution of Optimal Control Problems with Mixed Constraints and Real Coefficients  

Consider a quadratic optimal control problem governed by a linear state equation. The objective is to 

determine the control 𝑢(𝑡) and the corresponding state 𝑥(𝑡) that minimize a performance index subject to both 

dynamical and inequality constraints. The problem can be formulated as   

 𝑇 
2(𝑡) + 𝑞𝑢2(𝑡)) 𝑑𝑡,  (2.22)  

   Minimize    (𝑥, 𝑢) = ∫0 (𝑝𝑥 

   subjectto    𝑥 (𝑡) = 𝑎𝑥(𝑡) + 𝑏𝑢(𝑡),  (2.23)  

   𝑐(𝑡) + 𝑑𝑢(𝑡) ≤ 0,    𝑥(0) = 𝑥0,  (2.24)  

 where 𝑎, 𝑏, 𝑐, 𝑑 are real parameters and 𝑝, 𝑞 > 0 are positive weighting constants.  

Theorem 2.1 Let 𝑢∗(𝑡) denote the optimal control that minimizes 𝐼(𝑥, 𝑢) in the admissible set 𝑈, and let 𝑥∗(𝑡) 

be the corresponding optimal state satisfying (2.23). Then there exists an adjoint variable 𝜇(𝑡) that  

satisfies     

  𝜇 (𝑡) = −2𝑝 𝑥(𝑡) − 𝑎 𝜇(𝑡) − 𝑐 𝜆,    𝑡 ∈ [0, 𝑇],  (2.25)  

 together with the transversality and optimality conditions   

   (𝑇) = 0,                               (2.26)  

   𝑢∗(𝑡) = − 𝑏 𝜇(𝑡)−𝑑 𝜆.                         (2.27)  

                𝜆  = − − 𝜇  ,      (Adjoint Equation),      
 𝜕𝑥 𝜕𝑥 

(2.17)  

 𝜕𝑓 𝜕𝑔 𝜕ℎ 

                    = −𝜇  − 𝜆  ,        (Optimality Condition),  
 𝜕𝑢 𝜕𝑢 𝜕𝑢 

(2.18)  

                𝑥 (𝑡) = ℎ(𝑥, 𝑢, 𝑡),       (State Equation),  (2.19)  

 𝜕𝐻 𝜕𝜇 𝜕 

               = −𝑔  − 𝜆 ℎ,      (Stationary Condition).  (2.20)  
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2𝑞 

Proof. To derive the necessary conditions, we construct the augmented performance functional corresponding 

to (2.22)–(2.24). The Hamiltonian is defined as   

   (𝑥, 𝑢, 𝜇) = 𝑝 𝑥2(𝑡) + 𝑞 𝑢2(𝑡) + 𝜇(𝑎 𝑥(𝑡) + 𝑏 𝑢(𝑡)),  (2.28) 

while the Lagrangian incorporating the inequality constraint is given by   

   (𝑥, 𝑢, 𝜇, 𝜆) = 𝑝 𝑥2(𝑡) + 𝑞 𝑢2(𝑡) + 𝜇(𝑎 𝑥(𝑡) + 𝑏 𝑢(𝑡)) + 𝜆(𝑐 𝑥(𝑡) + 𝑑 𝑢(𝑡)).  (2.29) 

Applying the Euler–Lagrange principle to 𝐿, treated as a function of 𝑥, 𝑢, 𝜇, 𝜆, yields the system   

 𝑑 𝜕𝐿 𝜕𝐿 

    ( ) = ,                             (2.30)  
𝑑𝑡 𝜕𝑥  𝜕𝑥 𝑑 𝜕𝐿 𝜕𝐿 

    ( ) = ,                             (2.31)  
𝑑𝑡 𝜕𝑢  𝜕𝑢 𝑑 𝜕𝐿 𝜕𝐿 

    ( ) = ,                             (2.32)  
𝑑𝑡 𝜕𝜇  𝜕𝜇 𝑑 𝜕𝐿 𝜕𝐿 

   𝑑𝑡  
(
𝜕𝜆  ) = 

𝜕 𝜆.                             (2.33)  

Solving (2.30)–(2.33) gives   

   𝜇 (𝑡) = −2𝑝 𝑥(𝑡) − 𝑎 𝜇(𝑡) − 𝑐 𝜆,                     (2.34)  

   𝑢∗(𝑡) = − 𝑏 𝜇(𝑡)−𝑑 𝜆,                            (2.35)  
2𝑞 𝑏 𝜇(𝑡)+𝑑 𝜆 

   𝑥 (𝑡) = 𝑎 𝑥(𝑡) − 𝑏 ( ),                       (2.36)  
2𝑞 

𝑐 𝑥(𝑡) + 𝑑 𝑢(𝑡) = 0.                          (2.37)  

 Equations (2.34) and (2.36) form a coupled two-point boundary value problem that provides the necessary 

conditions for optimality. In compact form, this system can be written as   

 𝑥 (𝑡) −2𝑝 −𝑎 𝑥(𝑡) −𝑐 𝜆 

   ( ) = ( 𝑏2) ( ) + (− 𝑏  𝑑 𝜆). (2.3𝜆 .  (2.40)  

4𝑞 

 𝜇 (𝑡) 𝑎 −  𝜇(𝑡)  
2𝑞 

Let   

 −2𝑝 −𝑎 

   𝑀 = ( 𝑏2).  

 𝑎 −  
2𝑞 

The eigenvalues of 𝑀 are obtained as   

2𝑞 

   𝜆1 = − 4𝑝𝑞−√−(𝑏2+4𝑎𝑞−4𝑝𝑞4𝑞)(−𝑏
2+4𝑎𝑞+4𝑝𝑞)+𝑏2,  

 

(2.39)  
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 The corresponding eigenvectors are   

   𝑈 ,  (2.41)  

   𝑈 .  (2.42) 

 
Hence, the complementary solution of (2.38) is   

   𝑉(𝑡) = 𝑐1 ⃖𝑈   1 𝑒𝜆1𝑡 + 𝑐2 ⃖𝑈   2 𝑒𝜆2𝑡.  (2.43) 

Using the method of undetermined coefficients, we assume a particular solution of the form   

 𝑥𝑝(𝑡) 𝛼 

 𝑎 −  𝛽 −  

𝜆 2  

   𝛼 = 22,                             (2.46)  
2    

𝜆  

   𝛽 = − 22.                            (2.47)  

2    

Therefore, the complete solution of (2.38) can be expressed as   

   𝑉(𝑡) = 𝑐1 ⃖𝑈   1 𝑒𝜆1𝑡 + 𝑐2 𝑈⃖   2 𝑒𝜆2𝑡 + 𝛾⃖⃖,  (2.48)  

 where 𝑐1 and 𝑐2 are constants of integration. Knowing the initial condition (0), one can determine 𝜇(𝑇) to 

satisfy the transversality condition. The constants 𝑐1 and 𝑐2 are then obtained by substituting these boundary 

conditions into (2.48).   

RESULTS AND DISCUSSIONS  

Example 1    

 𝑇 
22  (3.1)  

             𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒  𝐼 

                           𝑢  0  0 .  (3.3)  

   ( 𝑝 ) = (𝛽) = 𝛾⃖⃖.  

𝜇 (𝑡) 

 Substituting (2.44) into (2.38) gives   

(2.44)  

 −2𝑝 −𝑎 

 0 𝛼 −𝑐 𝜆 

   ( ) = ( 𝑏
2) ( ) + ( 𝑏 𝑑 𝜆).  (2.45)  

0 

 Solving this linear system yields   

 2𝑞 2𝑞 

0  

                  𝑆𝑢𝑏𝑗𝑒𝑐𝑡𝑡𝑜  𝑥 (𝑡) = 𝛼𝑢(𝑡), 𝑥(0) = 𝑥0  (3.2)  
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 Take 𝑇 = 1 and 𝑥0 = 1.   

Solution 1 The Hamiltonian is given as   

 

   𝐻 = (𝑥2(𝑡) + 𝑢2(𝑡)) + 𝜇(𝑥 (𝑡) − 𝑢(𝑡))  

 Applying the necessary conditions for optimality   

(3.4)  

 𝑑 𝜕𝐻 𝜕𝐻 

    [ ] =   
 𝑑𝑡 𝜕𝑥  𝜕𝑥 

(3.5)  

 𝑑 𝜕𝐻 𝜕𝐻 

    [ ] =   
 𝑑𝑡 𝜕𝑢  𝜕𝑢 

(3.6)  

 𝑑 𝜕𝐻 𝜕𝐻 

    [ ] =   (3.7) 
 𝑑𝑡 𝜕𝜇  𝜕𝜇 

Applying equations (3.5), (3.6) and (3.6) on equation (3.4), we have   

   𝜇  = 2𝑥  (3.8) 

   𝑢∗ = 2𝑢 − 𝜇  (3.9)  

   𝑥  = 𝑢  

 From Equation (3.9)   

(3.10)  

   𝑢∗ = 𝜇  
2 

 In view of equation (3.11), equation (3.10) becomes   

(3.11)  

𝜇 

   𝑥 (𝑡) =   
2 

 Next, we solve for x and 𝜇 using matrix method 

(3.12)  

  

    (3.13)  

 𝜇  2 0 𝜇 

1 

 0  

 Let 𝐴 = [ 2], the eigenvalues 𝐴 using the characteristics equation |𝐴 − 𝜆𝐼| = 0 are 𝜆 = ±1.  

 2 0 

When 𝜆 = 1, we obtain the eigenvectors   

− 

  [ 1 

2 

1  𝑥 0 

2−1] [𝜇] = [0]  (3.14)  

   −𝑥 +  𝜇 = 0  (3.15)  
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   2𝑥 − 𝜇 = 0  (3.16)  

 This implies that when 𝑥 = 1, 𝜇 = 2.  

When 𝜆 = −1,   

1 

1  𝑥 0 

2 2] [𝜇] = [0]  (3.17)  

1 

   𝑥 +  𝜇 = 0  (3.18)  

  2𝑥 + 𝜇 = 0  (3.19)  

 When 𝑥 = 1, 𝜇 = −2.  

Therefore, the general solution of 3.13 is given as   

   𝑉(𝑡) = 𝑐1⃖𝑈   1 𝑒𝜆1𝑡 + 𝑐2𝑈⃖   2 𝑒𝜆2𝑡 + 𝛾⃖⃖  (3.20)  

 where 𝑐1 and 𝑐2 are constants of integration and ⃖𝑈   1  and ⃖𝑈   2  represent the eigenvectors of 𝐴. Since we 

know  

(0), the task is to choose 𝜇(𝑇) so that the transversality condition is satisfied. Hence,   

   𝑥∗(𝑡) = 𝑐1𝑒𝑡 + 𝑐2𝑒−𝑡  (3.21)  

   𝜇∗(𝑡) = 2𝑐1𝑒𝑡 − 2𝑐2𝑒−𝑡  (3.22)  

 Applying the initial conditions (0) = 1 and 𝜇(0) = 1, we have   

   𝑥∗(0) = 𝑐1 + 𝑐2 = 1  (3.23)  

   𝜇∗(1) = 2𝑐1𝑒1 − 2𝑐2𝑒−1 = 0  (3.24)  

 Solving (3.23) and (3.24) simultaneously, we obtain the values for = 𝑐2𝑒−2 and 𝑐2 
= 

𝑒 −
1

2+1 Hence,   

𝑒𝑡−2+𝑒−𝑡 

   𝑥∗(𝑡) = 𝑒−2+1  (3.25)  

 and   

   𝜇∗(𝑡) = 2 (𝑒𝑒𝑡−−22−+𝑒1−𝑡)  (3.26)  

𝜇 

 Recall from equation (3.11) that 𝑢 = . Hence,   
2 

   𝑢∗(𝑡) = 𝑒 𝑡−2−𝑒−𝑡  (3.27)  
𝑒−2+1 

 Substituting 𝑥∗(𝑡)  and 𝑢∗(𝑡)  into 𝐽 𝑑𝑡 , and solving the resulting integral, we 
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obtain an optimal value for 𝐽(𝑥, 𝑢)   

   𝐽∗ 1 𝑒𝑡−2+𝑒−𝑡 𝑒 𝑡−2−𝑒−𝑡 𝑑𝑡 
 (3.28)  

   𝐽∗(𝑥, 𝑢) =  𝑑𝑡  (3.29)  

   𝐽∗ 𝑑𝑡  (3.30)  

 2𝑡−4 −2𝑡 

   𝐽∗  ≤ 𝑡 ≤ 1)  (3.31)  

 Applying the lower and upper limits, we have,   

   𝐽∗   (3.32)  

   𝐽   (3.33)  

   𝐽   (3.34)  

Example 2     

𝑇 

            𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒  𝐼(𝑢) = 𝑥(𝑇) + ∫0 (𝑢(𝑡))2𝑑𝑡  (3.35)  

                  𝑆𝑢𝑏𝑗𝑒𝑐𝑡𝑡𝑜  𝑥  = 𝑎𝑥(𝑡) − 𝑢(𝑡), 𝑥(0) = 𝑥0  (3.36)  

                          𝑢(𝑡) ≤ 0, 0 < 𝑡 < 𝑇.  (3.37)  

Solution 2 The Hamiltonian is given as   

   𝐻 = 𝑢2(𝑡) + 𝜇(𝑥 (𝑡) − 𝑎𝑥(𝑡) + 𝑢(𝑡)  (3.38)  

 Thus, the E-L system can be written as   

 𝑑 𝜕𝐻 𝜕𝐻 

    [ ] =   (3.39)  
 𝑑𝑡 𝜕𝑥  𝜕𝑥 

 𝑑 𝜕𝐻 𝜕𝐻 

    [ ] =   (3.40)  
 𝑑𝑡 𝜕𝑢  𝜕𝑢 

 𝑑 𝜕𝐻 𝜕𝐻 

    [ ] =   (3.41)  
 𝑑𝑡 𝜕𝜇  𝜕𝜇 

 Applying equations (3.39), (3.40) and (3.41) on equation (3.38), we have   

   𝜇 (𝑡) = −𝑎𝜇(𝑡)  (3.42)  

   2𝑢(𝑡) + 𝜇(𝑡) = 0  (3.43)  

   𝑢   (3.44)  
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   𝑥 (𝑡) = 𝑎𝑥(𝑡) − 𝑢(𝑡)  (3.45)  

 This implies that   

𝜇(𝑡) 

   𝑥 (𝑡) = 𝑎𝑥(𝑡) +   (3.46)  
2 

   𝜇 (𝑡) = −𝑎𝜇(𝑡)  (3.47)  

 The general solution of the first order ordinary differential equation given by equation (3.42) is   

   𝜇(𝑡) = 𝑘𝑒−𝑎𝑡  (3.48)  

 From the transversality condition   

𝜕𝑥(𝑇)𝑥(𝑇) 

   𝜇(𝑇) =  = 1  (3.49)  
𝜕𝑥(𝑇) 

   𝜇(𝑇) = 𝑘𝑒−𝑎𝑇 = 1  (3.50)  

   𝑘 = 𝑒 −1𝑎𝑇 = 𝑒𝑎𝑇  (3.51)  

 Hence   

   𝜇(𝑡) = 𝑒𝑎(𝑇−𝑡)  (3.52)  

 Since 𝑢 , it implies that   

   𝑢∗(𝑡) = − 𝑒 𝑎(𝑇−𝑡)  
2 

 In view of equation (3.53), equation (3.45) now implies that   

(3.53)  

𝑒𝑎(𝑇−𝑡) 

   𝑥 (𝑡) = 𝑎𝑥(𝑡) +   (3.54)  
2 

𝑒𝑎(𝑇−𝑡) 

   𝑥  − 𝑎𝑥(𝑡) =   (3.55)  
2 

 Using the integrating factor 𝑒−𝑎𝑡 to solve equation (3.55), we have   

   𝑥𝑒 𝑑𝑡  (3.56)  

   𝑥(𝑡) = − 1 𝑒𝑎𝑇−𝑎𝑡 + 𝑐𝑒𝑎𝑡  (3.57)  
4𝑎 

 Applying the initial condition (0) = 𝑥0, we obtain the value of the constant of integration 𝑐 as follows   
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   (𝑡) = − 4 1𝑎 𝑒𝑎𝑇−𝑎(0) + 𝑐𝑒𝑎(0) = 𝑥0  (3.58)  

   𝑐 = 𝑥0 + 4 1𝑎 𝑒𝑎𝑇  (3.59)  

 This implies that   

   𝑥(𝑡) = − 4 1
𝑎 𝑒𝑎𝑇−𝑎𝑡 + 𝑥0𝑒𝑎𝑡 + 

4
1
𝑎 𝑒𝑎𝑇+𝑎𝑡  (3.60)  

   (𝑡) = 𝑥0𝑒𝑎𝑡 + 4 1𝑎 𝑒𝑎𝑇(𝑒𝑎𝑡 − 𝑒−𝑎𝑡)  (3.61)  

 Recall from equation (3.35) that   

 𝑇 
2𝑑𝑡  (3.62)  

   (𝑥, 𝑢) = 𝑥(𝑇) + ∫0 (𝑢(𝑡)) 

 This implies that   

 𝑇 −𝑒𝑎(𝑇−𝑡) 

   (𝑥, 𝑢) = 𝑥(𝑇) + ∫0 ( 2)2𝑑𝑡  (3.63)  

   𝑑𝑡  (3.64)  

   = 𝑥(𝑇) + [𝑒 

 −8𝑎1 2(𝑇−𝑡)]𝑇0  (3.65)  

   = 𝑥(𝑇) − 1 (𝑒2𝑎(𝑇−𝑇) − (𝑒2𝑎(𝑇−0)))  (3.66)  
8𝑎 

   = 𝑥(𝑇) + 1 (𝑒2𝑎𝑇 − 1)  (3.67)  
8𝑎 

CONCLUSION  

 This research has presented an analytical framework for solving continuous quadratic optimal control 

problems governed by ODEs with mixed constraints and real coefficients. The application of first-order 

optimality conditions to the Hamiltonian function provided the necessary equations for optimality, which were 

solved analytically to obtain the optimal state, control, and adjoint variables. The analytical approach 

developed in this study offers a rigorous and computationally effective tool for addressing a broad class of 

optimal control problems encountered in engineering and applied sciences.  
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