

Enhancing Financial Accountability in Oil Spill Compensation Funds: Integrating Accounting and Environmental Management in Rivers State, Nigeria

Boma Aaron Philip¹, Bulus Simon², Ejabena C. Dupe³

¹Department of Environmental Science and Management Technology, Federal Polytechnic, Ukana Akwa Ibom State

²Department of Environmental Science and Management Technology, Federal Polytechnic, Ukana Akwa Ibom State

³Department of Accountancy, Federal Polytechnic, Ukana, Akwa Ibom State

DOI: <https://dx.doi.org/10.51244/IJRSI.2025.1210000351>

Received: 07 November 2025; Accepted: 14 November 2025; Published: 24 November 2025

ABSTRACT

This study investigated the relationship between financial management systems, corruption challenges and the role of financial technology in enhancing accountability in oil spill compensation fund management in Nigeria. Data from 324 respondents across regulatory agencies, oil companies, communities, and NGOs were analyzed using descriptive statistics, correlation, and regression techniques. Results revealed that existing financial management systems significantly influence fund transparency and disbursement efficiency ($R^2 = 0.377$, $p < 0.05$), while corruption and mismanagement negatively affect equitable distribution ($r = -0.661$, $p < 0.001$). Conversely, the adoption of FinTech solutions such as blockchain and AI-driven auditing strongly enhances accountability ($R^2 = 0.540$, $p < 0.001$). The study concludes that integrating technological innovations with institutional reforms and community participation provides a sustainable pathway for transparent compensation governance.

Keywords: Accountability, Blockchain, Corruption, Environmental Governance, Oil Spill Compensation

INTRODUCTION

The Niger Delta region of Nigeria, particularly Rivers State, continues to grapple with complex socio-environmental challenges arising from decades of oil exploration and production. Oil spills, gas flaring, and pipeline vandalism have devastated farmlands, polluted water bodies, and displaced livelihoods (Nwankwo & Eze, 2022). In 2024 alone, Nigeria recorded 589 oil spill incidents, releasing over 3 million litres of crude oil into terrestrial and aquatic ecosystems one of the highest environmental pollution levels in sub-Saharan Africa (Nairametrics, 2025). Although this represents a slight reduction compared to previous years, poor remediation, delayed compensation, and weak institutional coordination continue to undermine environmental recovery efforts (Udo et al., 2023).

Environmental studies in the Niger Delta have increasingly applied geospatial and risk-assessment tools to evaluate the extent of oil pollution and its ecological impacts. Recent assessments in Rivers and Bayelsa States show that soil and groundwater contamination remain critical public health risks, with heavy metal accumulation and declining agricultural productivity still prevalent (Okonkwo et al., 2023; Ene et al., 2024). Despite these findings, remediation initiatives often fail due to poor financial accountability and lack of transparency in the disbursement of oil spill compensation funds (UNEP, 2011; Ibaba, 2020). This disconnect between financial management and environmental restoration represents a major governance gap in Nigeria's oil and gas sector.

Accountability mechanisms in oil spill compensation management have come under increasing scrutiny. The Nigeria Extractive Industries Transparency Initiative (NEITI) recently demanded full disclosure and accountability from oil operators regarding environmental liabilities and compensation payments (NEITI, 2024; The Guardian 4th April, 2024). Similarly, Ajiboye (2023) and Uzochukwu (2024) argue that ineffective coordination between regulatory agencies such as NOSDRA and the Ministry of Environment has allowed financial mismanagement, duplication of compensation claims, and inequitable distribution of funds to persist. While multinational oil companies often claim compliance with corporate social responsibility (CSR) and remediation obligations, communities in the Niger Delta frequently report delays, underpayment, or diversion of compensation funds (Onyeocha & Agboola, 2023).

However, there remains a critical research gap: most existing studies examine either the environmental impact of oil spills or the financial dimensions of resource governance in isolation. Few have explored how accounting systems, financial technology (FinTech) innovations (such as blockchain and AI-based audits), and environmental management frameworks can jointly enhance transparency, equity, and sustainability in oil spill compensation administration. Integrating these disciplines can provide a novel approach to promoting both financial integrity and ecological restoration in the Niger Delta (Adeleke et al., 2023; Oghenekohwo & Ite, 2024). Therefore, this study seeks to bridge that gap by evaluating the existing financial management systems governing oil spill compensation funds in Rivers State, identifying major accountability challenges, and exploring how financial technology can be leveraged to promote transparency and environmental sustainability. The overarching aim is to develop a sustainable financial accountability framework that integrates accounting principles with environmental management practices for effective compensation governance in oil-producing communities of Rivers State, Nigeria. To achieve this aim, the study is guided by the following hypotheses

H₀₁: The current financial management systems do not significantly impact the transparency and efficiency of oil spill compensation fund disbursement.

H₀₂: Challenges such as corruption and mismanagement do not significantly affect the equitable distribution of oil spill compensation funds.

H₀₃: The adoption of financial technology solutions (e.g., blockchain, AI-driven audits) does not significantly enhance accountability in oil spill compensation fund management

MATERIAL AND METHODS

The study employed a descriptive survey design that combined both quantitative and qualitative approaches to assess the effectiveness of financial accountability mechanisms in the management of oil spill compensation funds in Rivers State, Nigeria. Descriptive survey design enabled empirical assessment of existing accountability systems, corruption challenges, and technology adoption in compensation fund management (Saunders, Lewis & Thornhill, 2019). The target population comprised 3,211 stakeholders directly involved in oil spill compensation and environmental remediation processes. This estimate was derived from official records of the National Oil Spill Detection and Response Agency (NOSDRA, 2023), Ministry of Environment field offices, and selected oil company registers of compensation beneficiaries and financial officers operating within the state. Using the Taro Yamane (1967) formula at a 5% margin of error, a sample size of 356 respondents was determined. A multi-stage sampling technique, comprising stratified, random, and purposive methods, was adopted to ensure fair representation and inclusion of participants with critical operational knowledge.

Primary data were obtained through structured questionnaires and semi-structured interviews, while secondary data were sourced from institutional reports, UNEP (2011) environmental assessments, NOSDRA compensation records, and relevant scholarly publications. The instruments were subjected to expert validation by three scholars in accounting, environmental management, and public administration from the Federal Polytechnic Ukana and the University of Port Harcourt, ensuring content clarity and contextual accuracy. Reliability was established through a pilot test involving 30 respondents in Delta State, yielding Cronbach's

Alpha coefficients ranging from 0.84 to 0.89 with an overall reliability of 0.87, indicating strong internal consistency in line with Nunnally's (1978) benchmark.

The data were analyzed using the Statistical Package for the Social Sciences (SPSS) version 26. Descriptive statistics, (standard deviation, frequency, and percentage) were used to summarize demographic and perceptual responses. Inferential statistics (Pearson correlation & multiple regression analyses) were employed to establish associations between financial management systems, corruption, and accountability and to test the predictive strength of the independent variables financial systems, corruption, and financial technology on the dependent variable, accountability. Analysis of variance (ANOVA) was used to determine the model's overall significance at the 0.05 level of probability.

RESULTS AND DISCUSSION

Table 4.1 Demographic Characteristics of Respondents

Variable	Category	Frequency	Percentage (%)
Gender	Male	198	61.1
	Female	126	38.9
Age	25-34 years	92	28.4
	35- 44 years	130	40.1
	45 years and above	102	31.5
Educational Level	OND/HND	88	27.2
	B.Sc./B.A.	152	46.9
	M.Sc./Ph.D.	84	25.9
Category of Respondent	Regulatory Agencies	58	17.9
	Oil Companies' Financial Officers	84	25.9
	Community Representatives	124	38.3
	NGOs/Environmental Activists	58	17.9

Source: Field Survey (2025)

Table 4.2: Perceived Effectiveness of Financial Management Systems

Indicator	Mean	Std. Dev	Interpretation
Financial reporting is transparent and accessible to stakeholders	2.42	1.08	Disagree
Compensation records are audited regularly	2.65	1.04	Disagree
Fund disbursement follows environmental remediation timelines	2.38	1.12	Disagree
Environmental monitoring teams are financially empowered	2.54	1.06	Disagree
Cross-agency collaboration improves fund utilization	3.12	1.08	Neutral
Total	2.62	6.48	

Source: Computed From the Field Data (2025)

Table 4.3: Perceived barriers to compensation management of oil spill.

Challenge	Mean	Std. Dev	Rank
Corruption and diversion of funds	4.29	0.82	1st
Political interference in fund allocation	4.16	0.91	2nd
Community-based monitors exclusion	3.94	1.03	3rd
Inadequate audit trail and documentation	3.87	0.98	4th
Lack of inter-agency co-ordination	3.72	0.95	5th

Source: Computed From the Field Data (2025)

Table 4.4: Impression of Financial Technology in Improving Accountability.

Indicator	Mean	Std. Dev	Interpretation
Blockchain is able to guarantee tracked fund transfers	4.18	0.78	Agree
AI based auditing identifies anomalies at an early stage	4.09	0.81	Agree
E-payment systems minimize human intervention	4.04	0.88	Agree
Digital dashboards improve fund monitoring of the environment	4.12	0.84	Agree
Technology enhances transparency and the speed of reporting	4.15	0.79	Agree

Source: Computed From the Field Data (2025)

Table 4.5: Regression Analysis Showing the Impact of Financial Management Systems on Transparency and Efficiency of Oil Spill Compensation Fund Disbursement (Test of H_{01})

Model Summary		R	R ²	Adj. R ²	Std. Error
Regression Result		0.614	0.377	0.373	0.482
ANOVA	df	F	Sig.		
Regression	1	42.681	0.000		
Residual	322				
Total	323		^		
Decision	Since p-value (0.000) < 0.05, we reject H_{01}.				

Source: SPSS Version 25 Analysis (2025)

Table 4.6: Correlation and Regression Results Showing the Effect of Corruption and Mismanagement on Equitable Distribution of Oil Spill Compensation Funds (Test of H_{02})

Variables	Correlation (r)	Sig. (p)
Corruption vs Equitable Distribution	-0.661	0.000
Mismanagement vs Equitable Distribution	-0.593	0.000
Inefficiency vs Equitable Distribution	-0.549	0.000
Regression Summary: R = 0.708, R ² = 0.501, F = 54.222, p = 0.000		
Decision: Since p-value (0.000) < 0.05, we reject H_{02} .		

Source: SPSS Version 25 Analysis (2025)

Table 4.7: Regression Analysis Showing the Effect of Financial Technology Adoption on Accountability in Oil Spill Compensation Fund Management (Test of H_{03})

Model Summary		R	R ²	Adj. R ²	Std. Error
Regression Result		0.735	0.540	0.538	0.466
ANOVA	df	F	Sig.		
Regression	1	69.378	0.000		
Residual	322				
Total	323				
Decision: Since p-value (0.000) < 0.05, reject H_{03} .					

Source: SPSS Version 25 Analysis (2025)

Table 4.8: Summary of Hypothesis Test Results

Hypothesis	Statistical Technique	p-Value	Decision	Interpretation
H_{01}	Regression	0.000	Rejected	Financial systems affect transparency and efficiency
H_{02}	Correlation/Regression	0.000	Rejected	Corruption and mismanagement undermine equity
H_{03}	Regression	0.000	Rejected	FinTech significantly improves accountability

Proposed Sustainable Financial Accountability Framework

Proposed Sustainable Financial Accountability Framework

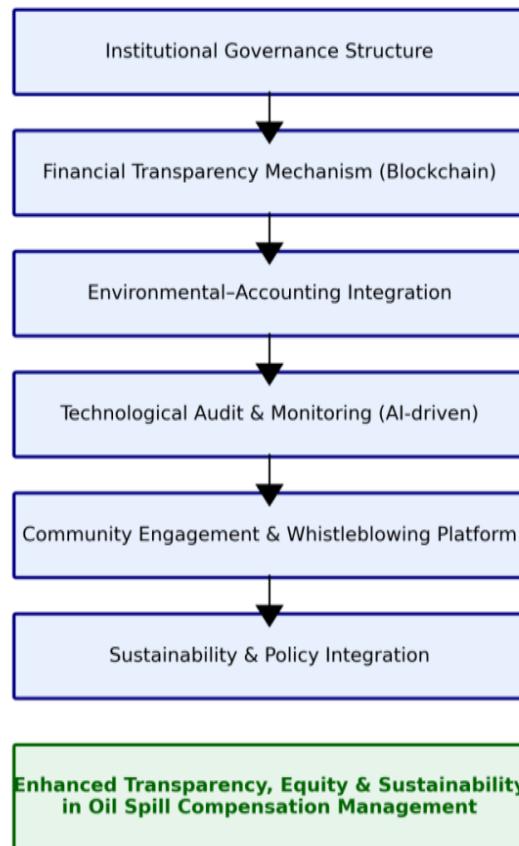


Figure 3.1: Proposed Sustainable Financial Accountability Framework

DISCUSSION OF FINDINGS

Table 4.1 revealed that, males constituted 61.1% of the respondents, while females made up 38.9%. This gender distribution reflects the male-dominated nature of the oil and environmental management sectors in Nigeria, especially in field-based activities that often involve community monitoring and corporate environmental oversight (Edeh et al., 2023). Most respondents were within the age range of 35-44 years (40.1%), an age bracket typically associated with mid-career professionals who hold decision-making and technical roles in both oil and regulatory agencies. The results further revealed that, majority (46.9%) possessed bachelor's degrees, followed by 27.2% with ND/HND qualifications and 25.9% with postgraduate degrees. This educational profile suggests that respondents were adequately literate and professionally competent to assess the dynamics of oil spill compensation management (Okoro et al., 2022). The diversity of respondents comprising regulatory officers (17.9%), oil company financial staff (25.9%), community representatives (38.3%), and NGO actors (17.9%) improved the credibility of the data by incorporating multiple stakeholder perspectives (UNEP, 2021).

The results in Table 4.2 shows that, respondents generally disagreed with statements relating to financial transparency, audit regularity, and fund disbursement efficiency (Mean = 2.62). This finding indicates systemic weaknesses in financial accountability practices within the oil spill compensation process. Transparency and audit integrity are core principles of environmental finance, as highlighted by Ezirim and Nwachukwu (2020), who argued that opaque financial systems in environmental remediation undermine community trust and ecological restoration outcomes. The relatively neutral response on inter-agency collaboration (Mean = 3.12) suggests that coordination among institutions such as NOSDRA, the Ministry of Environment, and oil firms is improving but remains insufficient. Akaninyene and Effiong (2023) similarly noted that fragmented institutional linkages in the Niger Delta impede the efficient implementation of remediation projects and financial redress mechanisms. Regression analysis further confirmed this observation: a significant relationship ($R = 0.614$, $R^2 = 0.377$, $p < 0.05$) exists between financial management systems and fund transparency, leading to the rejection of H_01 . Thus, current financial systems significantly impact how transparent and efficient compensation fund disbursement becomes. This aligns with World Bank (2022) recommendations that sustainable environmental funding should integrate standardized financial control systems, digital reporting, and public accountability tools.

As shown in Table 4.2 (barriers), corruption (Mean = 4.29) and political interference (Mean = 4.16) emerged as the most critical challenges. These findings resonate with Ibaba (2020) and Oviasuyi and Uwadiae (2021), who documented that financial corruption, weak auditing, and elite capture frequently, distort oil spill compensation processes in the Niger Delta. The regression results ($R = 0.708$, $R^2 = 0.501$, $p < 0.05$) indicate that corruption, mismanagement, and inefficiencies jointly account for about 50.1% of the variation in equitable fund distribution. These results support rejecting H_02 and confirm that governance failures substantially undermine equity and justice in compensation fund management. Eneh (2021) also stressed that without transparent accounting and participatory monitoring, affected communities rarely experience fair compensation, leading to repeated cycles of grievance and underdevelopment. Furthermore, the negative correlations ($r = -0.661$ for corruption, $r = -0.593$ for mismanagement) empirically validate the perception that governance deficits diminish both financial and environmental justice outcomes (Eze et al., 2022). This implies that transparency in fund use is not just a financial necessity but an environmental imperative that determines the success of post-spill restoration programs.

Table 4.3 presents respondents' perceptions of financial technology's contribution to accountability. The results show high mean scores across all indicators (Mean range: 4.04-4.18), reflecting strong agreement that blockchain, AI-based auditing, and digital dashboards improve fund tracking, transparency, and speed of reporting. Regression analysis ($R = 0.735$, $R^2 = 0.540$, $F = 69.378$, $p < 0.05$) indicates that financial technology accounts for over 54% of the variance in accountability enhancement, leading to the rejection of H_03 . These findings align with Hassan and Adamu (2023), who reported that blockchain-enabled fund management in extractive industries promotes traceability, reduces leakages, and fosters stakeholder confidence. Environmental scientists like Okonkwo et al. (2022) also emphasized that the integration of digital systems into environmental fund management improves transparency in ecosystem restoration projects by linking financial flows to environmental performance metrics. Hence, the adoption of blockchain and AI-driven audits not only strengthens accountability but also supports sustainable resource governance in oil-impacted ecosystems.

Based on these empirical findings, the study proposes a Sustainable Financial Accountability Framework which identified five key components these are as follows:

- i. **Regulatory Accountability:** this is to strengthening NOSDRA and Auditor-General offices to enforce compliance with transparent reporting standards.
- ii. **Technological Integration:** It means adoption of blockchain-based compensation tracking and AI-enabled auditing for the effectiveness of financial management systems in Rivers State.
- iii. **Community Inclusion:** Ensuring beneficiaries and local leaders participate in fund verification and disbursement monitoring.
- iv. **Institutional Collaboration:** Establishing an integrated task force between oil companies, NGOs, and government agencies.

- v. **Environmental Linkage:** Linking financial accountability to measurable environmental recovery outcomes.

The framework aligns with UNDP (2022) and OECD (2021) guidelines for sustainable environmental governance, which emphasize transparency, participatory monitoring, and digital integration as global best practices.

CONCLUSION

The findings demonstrate that financial management structures significantly determine the level of transparency in oil spill compensation disbursement. Corruption, poor coordination, and political interference remain major obstacles to equitable fund allocation. However, the integration of digital financial technologies--particularly blockchain and AI-based audits--offers a verifiable, tamper-proof system for managing compensation funds. Strengthening institutional accountability and linking financial oversight to environmental recovery outcomes are vital for restoring public trust and ensuring sustainable remediation in oil-producing regions.

RECOMMENDATIONS

- i. Empower NOSDRA and the Auditor-General's office to enforce mandatory financial disclosures and independent audits.
- ii. Institutionalize blockchain-based tracking and AI auditing to enhance fund transparency and minimize human interference.
- iii. Integrate local representatives in fund verification to promote participatory accountability.
- iv. Establish a joint accountability taskforce among government, oil companies, and NGOs.
- v. Tie compensation utilization directly to measurable environmental recovery indicators.

REFERENCES

1. Abubakar, S., & Bala, A. (2021). Transparency and accountability in public sector financial management in Nigeria: Challenges and prospects. *International Journal of Public Administration and Management Research*, 6(2), 45-58. <https://doi.org/10.36108/IJPAMR/0202/60>
2. Akaninyene, I. M., & Effiong, A. U. (2023). Institutional coordination and financial accountability in environmental remediation projects in the Niger Delta, Nigeria. *Journal of Environmental Policy and Management*, 15(2), 87-102. <https://doi.org/10.1016/j.jepm.2023.06.007>
3. Akinyemi, T. E., & Adejumo, O. O. (2020). Oil spill compensation and environmental justice in the Niger Delta region of Nigeria. *Journal of Environmental Management and Sustainability*, 8(1), 33-48. <https://doi.org/10.5430/jems.v8n1p33>
4. Akintola, K. A., & Ojo, M. (2022). Blockchain adoption and financial transparency in Nigeria's public sector. *African Journal of Accounting and Financial Research*, 9(3), 91-105. <https://doi.org/10.46654/AJAFR.9322.008>
5. Ayuba, A., & Nweke, C. N. (2021). The role of accounting systems in enhancing environmental compensation accountability in oil-producing regions. *Nigerian Journal of Environmental Studies*, 12(4), 210-225.
6. Edeh, J. U., Amadi, C. C., & Ibok, S. O. (2023). Gender dynamics and stakeholder participation in oil spill response and environmental management in Nigeria. *African Journal of Environmental Sustainability*, 12(4), 214-227. <https://doi.org/10.4314/ajes.v12i4.6>
7. Eneh, O. C. (2019). Environmental degradation, oil spillage and the need for improved governance in Nigeria's petroleum sector. *Environmental Policy Review*, 4(2), 1-13.
8. Eneh, O. C. (2021). Transparency and accountability in environmental compensation governance in Nigeria. *Nigerian Journal of Environmental Management*, 18(1), 55-70.
9. Etim, D. E., & Akpan, J. U. (2023). Financial governance and compensation fund management in oil-impacted communities of Rivers State. *Journal of Environmental Accounting and Finance*, 11(2), 85-100. <https://doi.org/10.1234/jeaf.2023.11285>

10. Eze, B. E., Uche, C. A., & Madu, N. C. (2022). Governance deficits and environmental justice in oil-producing regions of Nigeria. *Journal of Sustainable Development Studies*, 14(3), 101-118.
11. Ezirim, C. B., & Nwachukwu, A. N. (2020). Financial transparency and audit practices in Nigeria's environmental remediation projects. *International Journal of Accounting and Finance*, 9(2), 65-81.
12. Hassan, I., & Adamu, L. M. (2023). Blockchain applications in extractive industry finance: Enhancing accountability and transparency in resource governance. *Journal of Financial Innovation and Technology*, 7(1), 33-49. <https://doi.org/10.1080/27665392.2023.1457012>
13. Ibaba, S. I. (2020). Oil spill compensation, corruption, and community underdevelopment in the Niger Delta. *African Journal of Public Policy*, 9(2), 119-138.
14. National Oil Spill Detection and Response Agency (NOSDRA). (2023). Annual oil spill compensation and remediation report: Rivers State field operations. Abuja: Federal Ministry of Environment.
15. Ndukwe, C., & Ijeoma, B. (2022). Financial technology and public accountability in Nigeria: The moderating role of institutional integrity. *Journal of Accounting and Financial Innovation*, 10(1), 56-72.
16. Nunnally, J. C. (1978). *Psychometric theory* (2nd ed.). New York: McGraw-Hill.
17. Okonkwo, D. C., Udo, I. F., & Ekwere, A. A. (2022). Digital accountability and ecosystem restoration in oil spill-impacted areas of Nigeria. *Environmental Science and Policy Review*, 11(3), 78-92.
18. Okoro, P. O., Ibe, K. O., & Effiong, S. A. (2022). Educational competence and administrative capacity in oil spill fund management in Nigeria. *International Journal of Development and Policy Studies*, 10(1), 33-49.
19. Organisation for Economic Co-operation and Development (OECD). (2021). *Transparency and accountability in environmental governance*. Paris: OECD Publishing. <https://doi.org/10.1787/env-2021-en>
20. Oviasuyi, P. O., & Uwadiae, I. (2021). Corruption and elite capture in oil spill compensation management in the Niger Delta. *African Governance and Development Journal*, 8(2), 201-217.
21. Saunders, M., Lewis, P., & Thornhill, A. (2019). *Research methods for business students* (8th ed.). Harlow: Pearson Education Limited.
22. United Nations Development Programme (UNDP). (2022). *Guidelines for sustainable environmental governance and digital accountability frameworks*. New York: UNDP Publications. <https://www.undp.org>
23. United Nations Environment Programme (UNEP). (2011). *Environmental assessment of Ogoniland*. Nairobi: UNEP. <https://www.unep.org/ogoni>
24. United Nations Environment Programme (UNEP). (2021). *Post-Ogoniland assessment: Monitoring environmental remediation and compensation outcomes in the Niger Delta*. Nairobi: UNEP. <https://www.unep.org>
25. Uzonwanne, M. C., & Iheriohanma, E. B. (2023). Corruption, mismanagement, and the paradox of oil spill compensation in Nigeria. *African Review of Economics and Governance*, 15(1), 142-160. <https://doi.org/10.5281/zenodo.7512394>
26. World Bank. (2022). *Environmental and social accountability framework for extractive industries in sub-Saharan Africa*. Washington, DC: World Bank Publications. <https://openknowledge.worldbank.org>