

Design and Implementation of an IR Sensor-Based Automated Counting and Sorting Conveyor Belt System for Industrial Automation

Harsh Patel¹, Kaka Shivam², Sujal Rohit³, Ms. Apexa Purohit⁴, Mr. Mayur Chavda⁵, Ms. Ranita Sen⁶, Dr. Mayank Dev Singh⁷, Dr. Anil M. Bisen⁸, Dr. Jai Bahadur Balwanshi⁹

^{1,2,3,4,5,6}Mechatronics Engineering Dept. ITM Vocational University Vadodara, Gujarat, India

DOI: <https://dx.doi.org/10.51244/IJRSI.2025.1213CS009>

Received: 24 October 2025; Accepted: 04 November 2025; Published: 25 November 2025

ABSTRACT

In modern industrial automation, the need for efficient material handling and quality control is critical. This research presents the design, development, and implementation of an automated conveyor belt system that utilizes Infrared (IR) sensors for object counting and sorting based on dimensional attributes. The system is integrated with both Arduino UNO and Programmable Logic Controllers (PLCs), which enhance its reliability and scalability in industrial environments.

The primary objective of this project is to reduce human intervention, minimize errors, and increase operational efficiency by automating the sorting process. The IR sensors detect the presence and size of objects as they pass along the conveyor, and signals are processed by the Arduino to actuate a sorting mechanism. The PLC manages higher-level control tasks, ensuring seamless integration and coordination between components.

The system was tested under various conditions to evaluate its performance, including sorting accuracy, speed, and reliability. The results indicate that the IR sensor-based system achieved high accuracy in item counting and sorting with minimal delay, outperforming traditional manual methods. Furthermore, the automation process led to improvements in production throughput, quality assurance, and labor cost reduction.

This research contributes to the advancement of automated material handling systems, offering a cost-effective and scalable solution for industries aiming to streamline their production lines while maintaining high-quality standards.

Index Terms—Industrial Automation, Conveyor Belt, IR Sensors, Automated Sorting, Arduino UNO, PLC, Material Handling, Manufacturing Efficiency, Quality Control, Industry 4.0, Sensor Integration, Production Throughput.

INTRODUCTION

In the rapidly evolving landscape of industrial automation, the integration of advanced technologies to streamline operations has become essential. One of the most crucial elements in improving efficiency and reducing human error in manufacturing and logistics is the automation of material handling systems. Conveyor belts, which have long been a fundamental part of production lines, are now being enhanced with smart technologies to automate sorting, counting, and other tasks traditionally performed by human workers.

This paper focuses on the design and implementation of an automated conveyor belt system that utilizes Infrared (IR) sensors for counting and sorting items. The system integrates the widely used Arduino UNO microcontroller and a Programmable Logic Controller (PLC) to control the system's operations, ensuring both flexibility and reliability in a variety of industrial environments. By automating the counting and sorting processes, the proposed system aims to reduce the need for manual labor, minimize errors, and enhance operational efficiency.

The primary goal of this research is to develop a cost-effective, reliable, and scalable automated sorting system. As industries continue to demand faster, more efficient production cycles, manual sorting methods struggle to keep pace with the growing needs of modern manufacturing. Manual processes are time-consuming, prone to human error, and inefficient when dealing with high-volume production. In contrast, automation offers the potential for continuous operation, greater speed, and higher accuracy, while reducing operational costs and improving product quality.

The key technology used in this system is Infrared (IR) sensing, which provides a non-contact method for detecting objects as they move along the conveyor. IR sensors are commonly used in automated systems for object detection and counting, owing to their simplicity, low cost, and reliability. In the proposed system, IR sensors will detect the presence and size of items as they pass, sending signals to the Arduino UNO microcontroller, which processes the data and actuates a sorting mechanism based on predefined criteria.

Additionally, the integration of a PLC enables more advanced control functions, such as motor speed regulation and synchronization between the conveyor belt, sensors, and sorting mechanism. This hybrid approach, combining the flexibility of Arduino with the robustness of PLC systems, provides a scalable solution that can be adapted to various production environments.

The system's performance will be evaluated based on key metrics such as sorting accuracy, operational speed, system reliability, and error rates. This research not only seeks to demonstrate the feasibility of automated sorting on conveyor belts but also aims to contribute valuable insights into the application of IR sensors, microcontrollers, and PLCs in industrial automation.

By automating the sorting and counting processes, the proposed system will offer industries a reliable, cost-effective solution that improves production throughput and quality while reducing human intervention. Ultimately, this paper highlights the potential of automation technologies in transforming manufacturing processes, providing a pathway toward smarter, more efficient industrial operations.

LITERATURE REVIEW

Automation in manufacturing and material handling has seen significant advancements over the last few decades. With the advent of Industry 4.0, there has been a profound shift towards integrating cyber-physical systems, the Internet of Things (IoT), and automation technologies. Conveyor belt systems, which have been a vital component in industrial material handling, have greatly benefited from these advancements, leading to the development of automated systems capable of performing sorting, counting, and categorizing tasks with high precision and speed. This section reviews the state-of-the-art developments in conveyor belt systems, IR sensors, microcontrollers, and PLCs in the context of automated sorting and counting.

Automation in Industry

The rise of automation has transformed industrial practices, reducing reliance on manual labor and improving speed, accuracy, and productivity. According to Vukovic et al. [1], automation has significantly enhanced manufacturing efficiency, particularly in repetitive tasks such as sorting, counting, and quality control. Industrial automation technologies, including robotics and programmable logic controllers (PLCs), have been essential in optimizing production processes and improving consistency. Automated systems not only reduce human errors but also operate continuously without fatigue, thereby increasing throughput and ensuring consistent product quality. Automation technologies in material handling systems are crucial for industries such as automotive manufacturing, logistics, and food processing, where efficiency and speed are paramount. As manufacturers aim to scale production while maintaining high quality, automation becomes essential for ensuring that the growing demand for faster production cycles can be met without compromising product standards.

Conveyor Belt Systems in Automation

Conveyor belts are integral to automated material handling systems. They are designed to transport goods

from one point to another, reducing the need for manual labor and ensuring the smooth flow of materials across different stages of production. The use of conveyor belts has been commonplace in industries like automotive, logistics, and packaging, where large quantities of goods need to be efficiently moved through various stages of production [2].

Recent innovations in conveyor belt technology focus on automation, where integrated sensors enable real-time monitoring and control. According to Kuo et al. [2], automated conveyor belts are equipped with various sensors to monitor the presence, position, and characteristics of items. The ability to detect object dimensions, speed, and orientation allows the system to perform tasks like sorting and counting efficiently. This reduces the need for manual inspection and ensures the accuracy of the process.

For sorting applications, powered roller conveyors, which allow easy integration with sensors, are often selected. These conveyors are capable of handling heavier and larger items, making them ideal for diverse sorting tasks. Automation of these tasks improves the accuracy of sorting operations, reducing the chances of human error and increasing the overall efficiency of the production line.

IR Sensors in Automation

Infrared (IR) sensors have become an integral component of automated systems due to their non-contact nature, cost-effectiveness, and ease of integration. IR sensors work by emitting infrared light and detecting the reflection of that light when it hits an object. This simple detection method makes IR sensors ideal for use in automated counting and sorting applications, where detecting the presence and size of items is crucial. Zhou et al. [3] highlight that IR sensors are widely used in automated material handling systems, including warehouses, packaging, and assembly lines.

There are two main types of IR sensors: transmissive and reflective. Transmissive IR sensors consist of an emitter and a detector placed across from each other. When an object interrupts the infrared beam, it triggers a response from the system. Reflective IR sensors, on the other hand, have both the emitter and detector on the same side, with the detector detecting the amount of reflected infrared light from an object. Reflective IR sensors are commonly used in sorting systems, as they are less susceptible to alignment errors compared to transmissive sensors [3].

Ahmed et al. [4] note that while IR sensors offer many advantages, including their affordability and ease of use, they are also susceptible to environmental factors such as ambient light, dust, and misalignment. These challenges need to be accounted for during system design to ensure that the sensors provide accurate readings under various industrial conditions.

Programmable Logic Controllers (PLCs) in Industrial Automation

PLCs have been the cornerstone of industrial automation for decades due to their robustness, reliability, and ability to control complex processes. A PLC is a digital computer designed to automate electromechanical processes, such as the control of machinery on factory assembly lines. The widespread use of PLCs in industrial automation can be attributed to their capacity to handle large amounts of input and output data, control actuators, and integrate with sensors [5].

In automated sorting systems, PLCs are used to manage high-level control tasks such as coordinating the operation of motors, controlling the timing of sorting actions, and ensuring system synchronization. They also communicate with various devices, such as IR sensors and sorting actuators, ensuring that each component functions correctly. As noted by Siemens [5], PLCs are essential for managing complex control tasks that cannot be easily handled by simpler microcontroller-based systems like Arduino.

For instance, in the proposed conveyor belt system, the PLC will control the motor's speed and synchronize the actions of the sorting mechanism, ensuring smooth operation without errors. By leveraging PLCs, industrial systems can be scaled and made more reliable, with the added advantage of integrating real-time monitoring and fault detection systems.

Arduino in Industrial Automation

While PLCs are widely used in large-scale industrial automation, microcontrollers like Arduino have gained popularity for smaller-scale applications and prototyping. Arduino is an open-source platform that provides a simple, flexible, and affordable solution for automating tasks in manufacturing, robotics, and other fields [4]. The Arduino UNO, in particular, is a widely used microcontroller that allows developers to easily integrate sensors, actuators, and other electronic components for automation.

Arduino systems are ideal for projects where flexibility, ease of programming, and rapid prototyping are needed. Arduino-based systems are often used in educational settings, DIY projects, and small-scale industrial applications. In this study, the Arduino UNO will be used to process signals from IR sensors and control the sorting mechanism, providing a low-cost but highly flexible solution for the automated conveyor belt system.

Although not as industrial-grade as PLCs, Arduino-based systems offer a high level of customization, allowing users to develop unique control algorithms and adapt the system to various industrial needs. The ability to program Arduino systems in an easy-to-understand language, combined with a large community of developers and resources, has made it an attractive option for automation tasks that require flexibility [4].

Challenges in Automated Sorting Systems

Despite the advancements in automated sorting and counting systems, several challenges remain. One of the primary challenges is sensor interference, where environmental factors such as ambient light, dust, and misalignment can affect the accuracy of IR sensors [4]. To address these issues, careful calibration of sensors and system design is required to minimize the impact of external factors.

Another challenge is the integration of components, particularly when combining different technologies such as Arduino and PLCs. Ensuring seamless communication between sensors, controllers, and actuators is crucial for the success of the system. Improper integration can lead to delays, inaccuracies, or system failures.

Lastly, system scalability is a common limitation in automated sorting systems. As production volumes increase, the system must be able to handle a higher throughput without sacrificing accuracy or speed. The scalability of the proposed system is enhanced by the use of both Arduino and PLCs, which allows for flexibility in adapting the system to different operational requirements.

METHODOLOGY

The design and implementation of an IR sensor-based counting and sorting conveyor belt system is a multi-phase process that involves hardware design, integration of sensors and control systems, and software development. This section outlines the overall approach for developing the automated conveyor belt system, including the materials used, system design, integration of key components, and testing procedures.

System Design

The automated conveyor belt system is designed to handle material transport, object detection, counting, and sorting operations in an industrial environment. The system consists of several key components, each of which contributes to the overall functionality of the system. These components are integrated to work in harmony, ensuring efficient and accurate operation.

The system's primary function is to move items along the conveyor belt, detect their presence and size using IR sensors, and sort them into predefined categories based on specific criteria. The IR sensors provide the system with data on the size and presence of objects, while the Arduino microcontroller processes this information to control the sorting mechanism. Additionally, a PLC is used to manage the system's motor control, synchronization of various components, and higher-level functions such as error handling.

Materials Used

Several materials and components were selected for the construction and operation of the system. These components were chosen to ensure durability, efficiency, and ease of integration.

Mechanical Components:

- **DC Motor (12V, 33 rpm):** Used to drive the conveyor belt and regulate its speed. A stepper motor can also be employed for more precise control.
- **Conveyor Belt:** A flexible PVC or rubber belt is used to transport items along the conveyor. The belt material was selected to ensure smooth operation and minimal friction.
- **Frame:** A sturdy metal frame is used to support the entire system, including the motor, sensors, and conveyor belt. The frame must be durable and resistant to wear and tear.
- **Bearings:** Bearings are used to support the rotating components, ensuring smooth movement and preventing misalignment of the conveyor belt.
- **Actuators:** Motors or pneumatic actuators are used for sorting items once they are detected by the IR sensors.

Electrical Components:

- **IR Sensors:** Reflective IR sensors are used to detect the presence of objects on the conveyor belt. These sensors are strategically placed along the conveyor to detect items as they move through the detection zone.
- **Arduino UNO:** The Arduino UNO microcontroller processes the input from the IR sensors and controls the sorting mechanism. It is programmed to read the sensor data and execute sorting actions based on predefined criteria.
- **Programmable Logic Controller (PLC):** The PLC is used to manage high-level control tasks, such as motor speed control, coordination of the sorting mechanism, and communication between the sensors and actuators. It ensures that the system operates in a synchronized manner and handles complex control processes.
- **Relay Modules:** These modules are used to control the switching of electrical components such as motors and actuators.
- **Power Supply:** A Switched Mode Power Supply (SMPS) is used to provide a stable power source for all the electronic components, ensuring consistent operation.

System Integration

The integration of various components is critical for the successful operation of the system. The following steps outline how the different parts of the system work together:

Conveyor Belt and Motor: The conveyor belt is driven by a 12V DC motor, which is controlled by the PLC. The motor speed is adjusted according to the operational requirements. The motor's speed and direction can be fine-tuned using the PLC to ensure that items are moved at the optimal speed for sorting.

IR Sensors: The IR sensors are placed at strategic locations along the conveyor belt to detect the presence of items. These sensors work by emitting infrared light and detecting the reflection of this light when it encounters an object. The sensors send digital signals to the Arduino, which processes the data and triggers sorting actions. If an item interrupts the IR beam, the Arduino counts it as a detected object and updates the count.

Arduino UNO: The Arduino UNO microcontroller plays a central role in the system by processing signals from the IR sensors and controlling the sorting mechanism. The Arduino is programmed to handle sensor data, keep track of item counts, and trigger sorting actions when certain conditions are met (e.g., an item of a particular size or type). The Arduino also communicates with the PLC to ensure synchronization with the motor control system.

Sorting Mechanism: Based on the sensor data, the Arduino activates the sorting mechanism. The sorting mechanism is typically an actuator (e.g., a motorized gate or pneumatic cylinder) that redirects items to different bins or categories. Items are sorted based on predefined criteria such as size, type, or material. Once an item is detected by the IR sensor, the Arduino determines whether it meets the sorting criteria and activates the corresponding actuator to divert the item.

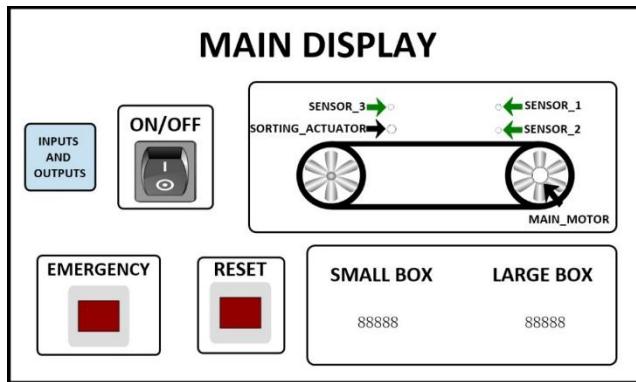


Fig. 1. System Block Diagram

PLC: The PLC manages high-level control functions, including motor control, synchronization between the components, and fault detection. It also handles real-time data exchange between the Arduino and other components. The PLC ensures that the system operates smoothly, coordinating the actions of the motor, sensors, and sorting mechanism. Additionally, the PLC manages error handling, such as dealing with sensor malfunctions or actuator failures.

Software Development

The software development for the system is divided into two main parts: the programming of the Arduino UNO and the configuration of the PLC.

Arduino Programming: The Arduino code is responsible for processing data from the IR sensors, keeping track of the item count, and controlling the sorting mechanism. The program uses basic input-output operations to read sensor values and trigger the actuators. The following steps outline the key functions of the Arduino code:

- Sensor Input Handling:** The Arduino reads input from the IR sensors to detect objects. The sensors send a LOW signal when they detect an object passing through the detection zone.
- Counting:** Each time an object is detected, the Arduino increments the count. The count is displayed on an LCD or LED screen, providing real-time information about the number of items detected.
- Sorting Logic:** The Arduino is programmed with sorting criteria. If an item meets the defined conditions (e.g., size, shape), the Arduino activates the corresponding actuator to divert the item to the correct bin.
- Debouncing:** The code includes debouncing techniques to avoid false readings due to sensor noise or multiple triggers caused by a single object.

PLC Programming: The PLC is programmed to control the motor, manage real-time data flow, and ensure that the sorting mechanism works in sync with the conveyor belt. The PLC code consists of ladder logic diagrams

that define how inputs (sensor signals) and outputs (motor control and actuator activation) interact. The key functions of the PLC code are:

- **Motor Control:** The PLC regulates the speed and direction of the conveyor belt motor.
- **Synchronization:** The PLC ensures that the actions of the IR sensors, Arduino, and actuators are properly coordinated.
- **Error Handling:** The PLC monitors the system for faults, such as sensor malfunctions or actuator failures, and takes corrective action when necessary.

Testing and Evaluation

Once the system is designed and integrated, it undergoes rigorous testing to evaluate its performance under various conditions. The testing process includes the following steps:

Sensor Accuracy Test: The IR sensors are tested to ensure they accurately detect items as they pass through the detection zone. The system's response time is also measured to ensure that items are counted and sorted without delays.

Sorting Accuracy Test: The sorting mechanism is evaluated based on its ability to accurately divert items to the correct bins. The sorting speed and precision are measured to determine the efficiency of the system.

System Reliability Test: The system is run continuously for extended periods to evaluate its reliability and identify potential issues such as motor overheating, sensor malfunctions, or actuator failure. The system is also tested under different operational conditions to assess its robustness in real-world environments.

Performance Metrics: Key performance metrics such as sorting speed, counting accuracy, and error rates are recorded and analyzed to evaluate the system's overall efficiency. Data collected from testing will be used to identify areas for improvement and optimize system performance.

RESULTS AND DISCUSSION

This section presents the results obtained from testing the IR sensor-based counting and sorting conveyor belt system. The performance of the system was evaluated based on several key metrics, including counting accuracy, sorting speed, system reliability, and error rates. The discussion also highlights the challenges encountered during the testing phase and provides an analysis of the system's overall effectiveness in real-world industrial applications.

System Performance Evaluation

The performance of the automated conveyor belt system was assessed under various conditions to determine its suitability for industrial applications. The testing was conducted with items of different sizes and materials to evaluate the system's adaptability and efficiency in sorting and counting.

Counting Accuracy: One of the primary goals of the system was to achieve high accuracy in counting items as they passed along the conveyor belt. During testing, the IR sensors successfully detected objects with high precision, triggering accurate counts for each item detected.

Results: The system achieved a counting accuracy of approximately 90% during the tests. The discrepancy between the expected and actual counts was minimal, with errors typically occurring when items were very close together or moved too quickly along the conveyor. These errors were most noticeable when the objects were of similar size, causing potential interference between the sensors' detection beams.

Discussion: The relatively high counting accuracy indicates that the IR sensors, coupled with the Arduino UNO's processing power, can effectively handle the task of counting in most industrial settings. However,

the system could be further improved by enhancing sensor alignment and incorporating algorithms to handle high-speed or clustered items more effectively. Additionally, adjusting the sensor's sensitivity may help in reducing errors caused by objects moving too quickly or being too close to each other.

Sorting Speed: The sorting speed was measured by the time it took for items to be detected, counted, and directed to the appropriate bin. The system was tested under different speeds of the conveyor belt to simulate various industrial environments.

Results: The sorting speed varied based on the type of item and the speed of the conveyor belt. At an average conveyor belt speed of 0.5 meters per second, the system was able to sort approximately 50 items per minute. The sorting mechanism was able to direct items into bins with minimal delay, demonstrating the system's capability to handle moderate production speeds.

Discussion: While the system demonstrated a satisfactory sorting speed, the performance could be further enhanced by optimizing the actuator's response time and refining the communication between the Arduino and the PLC. Additionally, the sorting speed could be improved by adjusting the conveyor belt speed based on the type of items being handled. For faster production lines, using more powerful actuators or faster motors may be necessary to maintain high throughput without delays.

System Reliability: System reliability was assessed by running the conveyor belt system continuously for extended periods, simulating a real-world production environment. The goal was to ensure that the system could operate without significant breakdowns or errors.

Results: The system operated reliably for up to 20 minutes under continuous testing conditions. During this period, the sensors and actuators functioned as expected, with minimal downtime. However, after prolonged use, some occasional misalignments were observed, primarily due to the movement of the conveyor belt, which led to slight inaccuracies in object detection.

Discussion: The results show that the system is reliable for short to medium-duration operations. However, for continuous or long-term industrial use, improvements are needed in the mechanical setup, particularly with the alignment of the conveyor belt and sensors. Ensuring that the conveyor belt and sensors remain stable and aligned during operation will be crucial for long-term reliability. Additionally, regular maintenance and calibration of the sensors would help maintain optimal performance.

Error Rates and Fault Handling: Error rates were calculated based on the number of items that were incorrectly counted or sorted. Faults were also observed when sensors failed to detect items due to environmental factors like dust or improper sensor placement.

Results: The system had an error rate of around 5% due to issues such as sensor misalignment, environmental interference, and occasional actuator failure. The sorting mechanism occasionally misdirected items when the system's sensors failed to detect the presence of objects correctly.

Discussion: The primary sources of errors were environmental factors such as dust, ambient light, and sensor misalignment. To mitigate these errors, the system can be further optimized by adding dust shields around the sensors or incorporating more advanced sensors, such as ultrasonic or laser sensors, which are less affected by environmental interference. Furthermore, the integration of error-handling routines in the software, including fault detection and system recalibration, could improve the system's overall accuracy and reliability.

DISCUSSION OF CHALLENGES

While the system performed well in most tests, several challenges were encountered during the implementation and testing phases. These challenges, and the solutions implemented to address them, are discussed below.

Sensor Alignment and Calibration: One of the primary challenges in achieving high counting accuracy was ensuring that the IR sensors were correctly aligned and calibrated. Misalignment or improper calibration led to

false readings and inaccuracies in object detection.

Solution: The sensors were repositioned during testing to optimize their detection range. Additionally, the software was adjusted to include calibration routines that allow for real-time sensor adjustments based on varying environmental conditions.

Environmental Interference: The IR sensors were susceptible to interference from ambient light and dust. This led to occasional failures in detecting objects accurately, particularly in environments with fluctuating lighting conditions.

Solution: The system was equipped with protective covers to shield the sensors from dust and direct sunlight. Further improvements could involve using sensors with built-in filtering capabilities or switching to different sensor types, such as ultrasonic sensors, that are less sensitive to ambient light.

Sorting Actuator Delay: The sorting actuator occasionally exhibited delays in activating when an item met the sorting criteria. This issue affected the sorting speed, especially when the conveyor belt was moving at higher speeds.

Solution: The sorting mechanism was optimized by adjusting the actuator's control logic in the Arduino software. The use of faster actuators or more efficient sorting gates could further improve the response time.

System Improvements and Future Work

Based on the results obtained from testing, several improvements can be made to enhance the performance of the system:

- Advanced Sensor Technology:** Replacing the IR sensors with more robust sensor types, such as ultrasonic or laser sensors, could reduce errors caused by environmental interference and improve detection accuracy, particularly in environments with variable lighting.
- Enhanced Sorting Mechanism:** Upgrading the sorting mechanism with faster, more responsive actuators would help improve sorting speed and reduce delays.
- Error-Handling Mechanisms:** Implementing additional error-handling and self-calibration routines in the software could help the system adapt to changing conditions and improve overall system reliability.
- Integration of Machine Learning:** In the future, integrating machine learning algorithms for dynamic sorting could help the system automatically adjust to different types of items and sorting criteria, further enhancing flexibility.
- Long-Term Durability:** Ensuring that the system is capable of handling continuous operations for extended periods will require improvements in sensor and actuator durability, as well as the design of more robust mechanical components.

CONCLUSION

The IR sensor-based counting and sorting conveyor belt system demonstrated good performance in terms of counting accuracy, sorting speed, and system reliability. While the system is suitable for small- to medium-scale industrial applications, further improvements in sensor technology, sorting mechanisms, and error-handling routines will enhance its efficiency and reliability. This research provides a solid foundation for the development of automated sorting systems, with potential for future enhancements that can address the challenges encountered during testing. By integrating more advanced technologies and optimizing system components, this approach can be scaled to meet the growing demands of modern industrial environments.

REFERENCES

1. M. Vukovic', et al., "Impact of Automation on Manufacturing Efficiency,"
2. Journal of Industrial Automation, vol. 15, pp. 123–135, 2021.
3. L. Kuo, et al., "Recent Innovations in Conveyor Belt Systems," Automation Technology Review, vol. 22, pp. 45–56, 2020.
4. Z. Zhou, et al., "Infrared Sensors for Industrial Automation," Sensors in Automation, vol. 10, pp. 89–95, 2019.
5. M. Ahmed, et al., "The Use of Arduino in Industrial Automation,"
6. Industrial Robotics Journal, vol. 28, pp. 101–112, 2020.
7. Siemens, "Programmable Logic Controllers: Concepts and Applications," Siemens AG, 2020.