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ABSTRACT  

One of Bangladesh's most urgent problems is still load-shedding, especially in the Barishal region, where 

frequent outages are frequently caused by an imbalance between the supply and demand for electricity. The 

majority of traditional load shedding techniques are reactive, manual, and unable to adjust to changing 

operating conditions. In order to optimize load shedding decisions, this paper suggests an Artificial 

Intelligence (AI) method based on fuzzy logic. The approach incorporates a number of variables into a fuzzy 

inference engine, such as the supply-demand ratio, system frequency, and meteorological conditions. A 

MATLAB/Simulink model was created and evaluated in a variety of real-world situations, including weather 

disruptions, supply shortages, and generator failure. According to the results, the AI-controlled method 

outperforms classical methods in terms of frequency and voltage stability, outage duration, and response time 

to disturbances. The suggested plan has a great deal of potential to improve Barishal's power system 

dependability and can be expanded to other parts of Bangladesh. 

Keywords: hybrid Load shedding, fuzzy logic, artificial intelligence, power system stability, Barishal, 

Bangladesh. 

INTRODUCTION 

Over the past decade, significant blackouts have occurred globally, causing financial losses and disruptions in 

customer services[1]. These events highlight the need for effective control strategies to mitigate system 

blackouts. One key approach is implementing robust contingency analysis procedures to maintain a delicate 

equilibrium between power supply and demand. The power grid is complex and interconnected, and even minor 

disruptions can trigger a cascade of events, leading to system instability[1][2]. In such critical situations, power 

system operators must resort to emergency operation control strategies, including load shedding, to regain 

stability and prevent system-wide disasters[3]. 

In Bangladesh, the lack of generation capacity has led to a shortage of electricity, affecting industrial and 

agricultural growth and the country's economy. Load shedding is done to balance power demand and supply, 

forcing industries and businesses to close or relocate. To address this shortage, several options are under 

consideration, such as increasing generation capacity, developing renewable energy technologies, and power 

system optimization[4]. 

Fig. 1 illustrates the map of Barishal Upazila, the main administrative and commercial sub-district of Barishal, 

which occupies an area of roughly 324.41 square kilometers. It is located between latitudes 22°39′ and 22°50′ 

north and longitudes 90°15′ and 90°23′ east. The Kirtankhola River forms the upazila's boundary, and it is 

distinguished by a dense network of both urban and rural communities. Barishal Upazila, the district's 

commercial center, has a high demand for electricity from small businesses, markets, and households. Regular 

load shedding and power outages have a direct impact on daily life, education, and business operations. 

Furthermore, the availability of crop residues from nearby agricultural regions points to the potential for the 

production of electricity using biomass. Barishal Upazila is a good candidate for the implementation of 

localized renewable energy solutions and intelligent load management strategies due to its unique geographic 

and resource characteristics. 
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Fig. 1. The map of Barishal Upazila[5] 

The Barishal upazila of Bangladesh faces a significant challenge in maintaining an uninterrupted power 

distribution network. Load shedding, a practice where power is intentionally cut off due to fluctuations in 

demand and supply, continues to be a persistent issue, causing disruptions and inconveniences for residents and 

adversely impacting local businesses. Traditional methods for load shedding management often fail to adapt 

swiftly to the dynamically changing energy landscape, resulting in suboptimal outcomes[6]. 

In the contemporary era of technological innovation and data-driven decision-making, Artificial Intelligence 

(AI) and Machine Learning (ML) have emerged as powerful tools with the potential to revolutionize load 

shedding management[7][8]. This paper explores the innovative application of AI techniques to control and 

mitigate load shedding in Barishal, aiming to create a smarter, more responsive, and efficient power distribution 

system that minimizes disruptions and enhances the city's energy infrastructure. 

LITERATURE REVIEW 

Conventional load shedding relies on predetermined thresholds or operator intervention[9]. While effective in 

preventing total blackouts, these methods are reactive, rigid, and often lead to unnecessary outages. 

Studies in Pakistan and Libya have explored AI-based control systems, employing neural networks, particle 

swarm optimization, and fuzzy logic for load management. For example, Alarbi (2019) used AI to reduce 

customer inconvenience during shedding, while Alamri (2020) focused on ANN-based load optimization in 

Pakistan’s grid[1][2]. In microgrids, fuzzy logic has been successfully applied to integrate renewables and 

balance fluctuating demand[8][10][11]. 

Despite these advances, minimal research has focused on regional applications within Bangladesh. Barishal, 

with its chronic electricity shortfall, presents a critical case where intelligent load shedding can enhance system 

reliability and minimize consumer disruption[12][13]. This study addresses that gap. 

METHODOLOGY 

In this study, we explore the most efficient use of AI technologies for controlling load shedding over a region.  

We go into the intricate process used to create the load-shedding control system, which depends on 

undervoltage, overvoltage, frequency deviation, and weather conditions. We will look at the structure of the 

system, the data collection process, and how the AI algorithm uses the fuzzy logic method. 

System Architecture 

The proposed AI-based load shedding system consists of three major modules. Here, Fig. 2 illustrates the 

flowchart of the proposed system architecture. System block diagram of the AI-based load-shedding controller 

showing measurement inputs, fuzzy inference block, and feeder CB outputs 
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Fig. 2. The flowchart of the system architecture 

1) Data Acquisition: Real-time inputs such as supply-demand ratio, system frequency, and weather 

conditions[8][14]. 

2) Fuzzy Logic Controller: Fig. 3 presents the flow chart of the fuzzy logic controller, which serves as the 

Main decision-making unit that processes inputs using fuzzy membership functions and rule 

bases[14][15]. 

 

Fig. 3. Flowchart of fuzzy logic controller 

3) Execution Module: Implements load shedding commands in affected areas based on fuzzy output. 

Fuzzy Logic Design 

The fuzzy logic design depends on two variables- Input variables and Output variables. 

We selected Supply–Load Ratio, Frequency, and Weather as input variables because they collectively reflect 

the grid’s short-term stress and the external conditions that influence demand and generation stability. The 

Supply–Load Ratio captures instantaneous supply adequacy, Frequency indicates system stability and 

imbalance, and Weather accounts for demand surges and renewable generation variability. Together, these 

variables enable the controller to make context-aware, priority-based load-shedding decisions. 

1) Input variables: 

 Supply-load ratio (0.5 — 2.0). Fig. 4 is a graph showing the fuzzy membership functions of the supply-load 

ratio. It defines three linguistic variables- (Poor, Average, Good) — triangular/trapezoidal shapes and 

universes of discourse. {Poor: trapezoid left (0.5, 0.5, 0.8, 1.0), Average: triangle (0.9, 1.15, 1.4), and Good: 

trapezoid right (1.3, 1.6, 2.0, 2.0)} 
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Fig. 4. The graph of the supply load ratio vs membership 

 Frequency (49–51 Hz). Fig. 5 shows the fuzzy membership functions of frequency for three categories: poor, 

average, and good. Poor: trapezoid (0.0, 0.0, 49.2, 49.6), Average: triangle (49.4, 50.0, 50.6), Good: 

trapezoid (50.4, 50.8, 51.0, 51.0)} 

 

Fig. 5. The graph of frequency vs membership 

 Weather condition (0–1 index). Fig. 6 presents the fuzzy membership functions of weather conditions as 

poor (Rainy), average (stormy), and good (clear) { Poor (bad): (0.0, 0.0, 0.3, 0.5), Average: (0.4, 0.55, 0.7) 

and Good: (0.65, 0.85, 1.0, 1.0)} 

 

Fig. 6. The graph of weather vs membership 

2) Output Variables: 

 Load shedding level (None, Low, Medium, High). Fig. 7 illustrates the fuzzy membership functions of load 

shedding levels 

 

Fig. 7. The graph of load shedding vs membership 

Membership functions were defined for each variable, and a rule base was constructed (e.g., if frequency is low 

and demand is high, Then apply high load shedding)[15]. 
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The fuzzy rules were designed using domain knowledge of power systems and by mapping typical operational 

scenarios to appropriate control actions. We defined linguistic terms (Poor, Average, Good) for each input and 

examined combinations that represent critical states. For example, when the supply–load ratio is Poor, 

Frequency is Average, and Weather is Good, the rule triggers a moderate shedding action because supply is 

insufficient even though frequency is not yet critical. Rules were validated against historical disturbance 

scenarios and refined iteratively to avoid conflicting outputs and ensure smooth transitions between shedding 

levels. 

Simulation Setup 

The fuzzy logic controller was implemented in MATLAB/Simulink. To facilitate the integration of our Fuzzy 

Logic-based load shedding system with the power grid infrastructure, we create interfaces and connectors that 

enable seamless data exchange and communication between the AI system and grid components. This includes: 

 Developing APIs and data connectors to enable real-time data flow between the Fuzzy Logic system and 

grid monitoring devices. 

 Establishing protocols for bidirectional communication, allowing the system to receive real-time grid status 

updates and send load shedding commands when necessary. 

Sensor data and IoT devices play a pivotal role in real-time grid monitoring and load shedding control. Our 

methodology involves: 

 Deploying a network of sensors and IoT devices within the grid infrastructure to monitor crucial parameters, 

including voltage levels, current flow, frequency, and equipment health[12]. 

 Incorporating sensor data into the Fuzzy Logic system to enable rapid and informed decision-making in 

response to changing grid conditions or fault events 

As shown in Fig. 8, a fuzzy logic controller that takes four RMS inputs, processes them, and distributes the 

resulting control signal to four separate feeders. In contrast, Fig. 9 shows a more comprehensive system block 

diagram. The diagrams illustrate different levels of complexity in control systems, from a basic fuzzy to an 

advanced AI-driven solution.  

 

Fig. 8. Controller for the system 

 

Fig. 9. AI load shead controller system and model 
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A. Code for the Load Shedding Scheme: 

#!/usr/bin/env python 

# coding: utf-8 

# # Import Library 

import numpy as np 

import skfuzzy as fuzz 

from skfuzzy import control as ctrl 

import datetime 

def hour(): 

current_time_seconds = datetime.datetime.now() 

time = str(current_time_seconds) 

time = time.split(" ")[1][0:2] 

time = int(time) 

return time 

# # Arrange Data 

sl_ratio = np.arange(0.1,1.1,0.2) 

weather = np.arange(0.1,1,0.1) 

freq = np.arange(49.0,50.9,.3) 

shed = np.arange(0.1,1,0.1) 

sl_ratio 

# # Assign Input 

sl_ratios = ctrl.Antecedent(sl_ratio,"Supply-Load Ratio") 

freqs = ctrl.Antecedent(freq,"Frequency") 

weathers = ctrl.Antecedent(weather,"weather") 

# # Assign Output 

sheds = ctrl.Consequent(shed,'Load Shedding') 

# # Define Membreship Function Automatically 

sl_ratios.automf(3) 

freqs.automf(3) 
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weathers.automf(3) 

sheds.automf(3) 

# # View Membership Function 

sl_ratios.view() 

freqs.view() 

weathers.view() 

sheds.view() 

# # Define Rule 

rule1 = ctrl.Rule(sl_ratios['poor'] & freqs['poor'] | freqs['good'] & weathers['good'], sheds['good'])  

rule2 = ctrl.Rule(sl_ratios['average'] & freqs['poor'] | freqs['good'] & weathers['average'],sheds['average']) 

rule3 = ctrl.Rule(sl_ratios['good'] | freqs['average'] | weathers['good'],sheds['poor'])  

# # View Rule 

rule1.view() 

rule2.view() 

rule3.view() 

# # Creating The Model 

sys = ctrl.ControlSystem([rule1,rule2,rule3]) 

sim = ctrl.ControlSystemSimulation(sys) 

# # Simulation Part 

load = 300 

supply = 250 

sl_ratio = supply/load 

weather = 1 

freq = 50 

inst_time = hour() 

sim.input['Supply-Load Ratio'] = sl_ratio 

sim.input['weather'] = 1 

sim.input['Frequency'] = 49.8 

sim.compute() 
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load_shed = sim.output['Load Shedding'] 

sheds.view(sim=sim) 

load_shed = round(load_shed, 1)-0.2 

S_load = load_shed*load 

S_load 

RESULTS AND ANALYSIS 

Effect of inputs on Shedding 

The impact of three important input parameters—weather, system frequency, and supply-demand ratio—on 

load shedding results was investigated by evaluating the suggested fuzzy logic-based controller under various 

operating conditions. 

 Supply-Demand Ratio: The fuzzy controller continuously generated a "No Shedding" output to 

guarantee continuous service when the supply of electricity exceeded the demand. The system 

dynamically increased the level of shedding in proportion to the gap as shortages emerged. By fine-

tuning its decisions, the fuzzy system reduced needless outages, in contrast to classical methods that 

disconnect large blocks of consumers regardless of demand levels[16]. In Barishal, where demand 

varies greatly during peak hours, this adaptive response is particularly helpful. 

 Weather: According to simulation results, the likelihood of medium-to-high shedding was raised by 

unfavourable weather conditions like storms or heavy rainfall. By incorporating weather into the 

decision-making process, the system was able to predict possible instability brought on by network 

disruptions (such as line trips or substation flooding)[17]. Compared to conventional techniques, which 

are oblivious to environmental influences, this capability clearly offers an advantage. 

 System Frequency: The fuzzy controller showed a high degree of sensitivity to variations in frequency. 

In contrast to traditional shedding techniques, frequency recovery was accomplished considerably more 

quickly under abrupt disturbances like generator loss. This suggests that the AI-based system improves 

overall system stability in addition to demand-supply balancing. 

System Performance 

In addition to the impact of individual inputs, the system's overall performance was evaluated in terms of 

resilience, speed, and adaptability. 

 Quick Reaction: After identifying instability, the fuzzy logic controller started load shedding in 

milliseconds. Classical methods, on the other hand, frequently call for manual intervention, which 

causes delays and increased instability[8]. One significant step toward real-time stability control is the 

automation of decision-making. 

 Adaptability: Taking into account several factors at once, the system dynamically changed the shedding 

levels. For example, when demand was high but weather was stable, the shedding remained moderate; 

however, in cases of high demand combined with stormy weather, the system automatically shifted to 

higher levels of shedding to maintain grid integrity.  

 Resilience: The fuzzy logic system remained stable with little disturbance even in the face of extreme 

unforeseen circumstances like transmission line tripping and generator outages. The fuzzy system 

distributed shedding more fairly across time and consumers, enhancing fairness and service continuity, 

while the classical method disconnected entire load blocks, resulting in sudden supply interruptions[7]. 
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Table 1 Comparison of AI-Fuzzy vs. Classical Load Shedding[18] 

Performance Criteria Classical Method AI-Fuzzy Method 

Response Time Slow (manual) Fast(automatic) 

Adaptability Very Low High 

Frequency Stability Moderate Improved 

Customer Disruption High Reduced 

Handling Weather Conditions Absent Integrated 

Comparative Analysis 

The obvious benefits of the AI-fuzzy controller over the traditional method are demonstrated by a comparative 

analysis. 

 

Predefined load blocks are disconnected by the traditional load shedding mechanism, frequently in excess of 

what is necessary[19]. This not only wastes the supply that is available, but it also causes needless 

inconveniences for customers. The fuzzy logic system, on the other hand, keeps service for as many customers 

as possible by only shedding the amount necessary to restore stability. 

Additionally, by adding weather as a decision variable, the system was able to predict difficulties specific to 

Barishal, like cyclones and intense rains. An innovative advancement over conventional methods is the 

capacity to couple grid parameters with environmental data[8]. 

While the conventional system recovered slowly and rapidly, the fuzzy controller restored frequency fast and 

with minimal variance. This demonstrates how intelligent shedding not only lowers outages but also enhances 

power quality and dependability. 

All things considered, the simulation results validate that the use of AI and fuzzy logic in load shedding 

decision-making produces more practical, effective, and user-friendly results. 

CONCLUTION 

The study suggests an AI approach that takes supply-demand balance, weather, and frequency deviations into 

account when optimizing load shedding in Bangladesh's Barishal region. According to simulation results, the 

fuzzy controller increases adaptability, decreases outage duration, and improves grid reliability. Future studies 

might focus on intelligent microgrid management using renewable energy sources, real-time field testing, and 

expanding to smart grids and Internet of Things-based adaptive load shedding systems [11][13]. 
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