ISSN No. 2321-2705 | DOI: 10.51244/IJRSI | Volume XII Issue IX September 2025

Aloe (Aloe Barbadensis Mill.) Gel as an Agent in Delaying the Post-Harvest Deterioration of Eggplant (Solanum Melongena), Tomato (Lycopersicum Esculentum), and Bell Pepper (Capsicum Annum)

Jolina A. Enardecido, Ragr*, Irene Mil S. Kilat, Ragr¹, and Jake D. Balate, Ragr²

^{1,2} Mexed Monkayo College Of Arts, Sciences, and Technology, L. S. Sarmiento St. Poblacion, Monkayo, Davao De Oro, Philippines

*Corresponding Author

DOI: https://doi.org/10.51244/IJRSI.2025.120800355

Received: 05 September 2025; Accepted 11 September 2025; Published: 14 October 2025

ABSTRACT

Solanaceous crops such as eggplant, tomato, and bell pepper are highly valuable crops in the Philippines for its versatility in Filipino food cuisines. However, these crops after harvest are prone to deterioration due to faster ripening and microbial contamination leading to short life duration during transport and storage. To address this challenge, introduction of botanical coatings to delay post-harvest deterioration of these crops is promising ecofriendly solution. Aloe (Aloe barbadensis Mill.) plant which is widely planted for its gel has been reported to contain biologically active compounds that are highly valuable for medicinal, cosmetic, and industrial uses. In the Philippines, aloe vera is valued as an ornamental plant with strong domestic demand and emerging export opportunities. It has also been studied as a potential edible coating to improve the post-harvest life of fruits, and has extensively applied for fresh produce preservation. However, studies about its effects on the post-harvest life of solanaceous crops in Philippine condition is limited. Thus, this study sought to investigate the effect of the different aloe gel (AG) concentrations as pre-treatment on the quality of eggplant, tomato, and bell pepper fruits during storage. Fruits were coated with AG and changes in the physical quality of the solanaceous fruits were measured during storage within 7, 12, and 21 days. The present study showed that coating with 20%-30% AG reduced the weight loss, and consequently, decreased loss of firmness, less shrinkage, lesser disease incidence and severity, thereby improving the visual quality of the fruits. Pre-treating the fruit with AG was done by mixing it with water to enhance the storage quality of the fruits. Results obtained from this study show that aloe gel coating can be useful in extending the postharvest storage life and maintaining the quality of solanaceous fruits during storage.

Keywords: Post-harvest, fruit deterioration, pre-treating fruits, aloe gel coatings, Monkayo

INTRODUCTION

Major challenge for crop improvement of solanaceous crops such as eggplant (Solanum melongena), tomato (Lycopersicum esculentum), and bell pepper (Capsicum annum) is the enhancement of their nutritive values while improving the quality and reducing the postharvest waste (Seymour, et al., 2013). These crops were prone to physiological deterioration due its short shelf-life duration, increase ethylene production, increase respiration, storage methods, and also the influence of environmental factors such as temperature and light (Barkai-Golan, 2001). In addition, the pest and diseases also contributed to the deterioration processes of these crops such as the anthracnose that is commonly caused by Colletotrichum spp. (Ali, et al., 2016), and bacterial wilt caused by Ralstonia solanacearum (Manda, et al., 2020) which can later cause postharvest losses if not manage as early as possible.

Philippine production of eggplant in the year 2021 was 0.5 % higher than the output in 2020, which also have an average annual rate of 0.2 % from 2017 to 2021 (PSA, 2023). However, this increase in production doesn't mean that there are no losses. In fact, Flores et al. (2018) reported that the postharvest system's loss of eggplant ranged from 4.78 to 8.05% for a period of two days from harvest at the farm to retail market level which implies that losses of this crop lie at the post-harvest operation. The same goes to the domestic production of tomato and bell pepper where there were a 1.6%, and 7.0% annual increase as reported by PSA (2022). Despite of this increasing production, the losses due to several factors still exist where in fact tomato has a postharvest loss of up to 25-42%

ISSN No. 2321-2705 | DOI: 10.51244/IJRSI | Volume XII Issue IX September 2025

globally according to Khan and Jan (2007). Also, according to SEARCA, (2022), tomato produced in Nueva Ecija, Philippines incurred post-harvest losses of 10.94% where the volume of post-harvest losses reached 1, 930 tons with a value of 47 million pesos. Thus, proper management and prevention practices is necessary to lessen the losses of these crops during the post- harvest period.

However, one of the utmost concerns in terms of management is that our local farmers habitually use synthetic pesticides to directly control the deterioration process of the harvested crops while unconsciously harming the ecosystem and human health (Bonmatin, et al., 2021). The use of these synthetic pesticides was practiced by the local farmers for many years which also became a culture of every farm with the hope of producing a customers' preferred appearance such as having a shiny surface without any bruises or diseases.

Therefore, to lessen the harmful effects of synthetic chemicals while reducing post-harvest losses, the optimization of naturally based products to delay the crop deterioration is a trend. In fact, food losses reduction according to Chakraborty and Chattopadhyay, (2018) is less costly than the equivalent increase in food production, and that the success of food production lies in the proper distribution of produce and its subsequent utilization by the consumers with least waste in the process.

Furthermore, Martínez-Romero, et al., (2006) believed that coating fruits with preservative compounds provides a modified atmosphere by creating a semi-permeable barrier against oxygen, carbon dioxide, moisture, and solute movement, thereby, retarding the deterioration of fruits and vegetables. In addition, the study of Farina, et al., (2020) concluded that the postharvest application of aloe vera gel-based edible coating improved the quality and storage stability of fresh-cut papaya.

Hence, in this study, optimization of aloe vera, scientifically known as Aloe barbadensis Miller, with its clear, mucilaginous fluid known as aloe vera gel found inside the parenchyma cells (Ramachandra, et al., 2008) was used to delay the physical deterioration of solanaceous crops such as the eggplant, tomato, and bell pepper. Specifically, the study aimed to determine the effects of aloe vera gel application at different concentrations to the physical appearance of solanaceous crops (eggplant, tomato, and bell pepper fruits); evaluate the efficacy of aloe vera gel at lower concentration in extending shelf-life, maintaining physical quality, and controlling disease incidence of solanaceous crops; and evaluate the various responses of these solanaceous crops to its physical attributes with the application of aloe vera gel.

MATERIALS AND METHODS

Collection of Solanaceous Fruits

This study was conducted at Monkayo College of Arts, Sciences, and Technology, Poblacion, Monkayo, Davao de Oro, Philippines. Commodity used in this study were the freshly harvested solanaceous fruits from the municipality of Monkayo, Davao de Oro. It was traveled inside a cooler container to ensure freshness, prevent pest and diseases, as well as to avoid temperature and mechanical injuries. Fruits with defects (sunburn, cracks, bruises and cuts) were discarded, while only the fruits with healthy epidermis, even maturity, homogenous sizes and appearances were used.

Aloe Vera Gel Preparation

Aloe vera gel (aloe gel) was prepared following the procedure of Ramachandra, et al., (2008) with slight modification to resort available resources. The aloe vera leaves were freshly harvested, and transported inside a cooler container from the field to the laboratory to allow undamaged, disease free, and matured (3-4 years) leaves, as well as to keep all the active ingredients in full concentration. Upon the arrival of the aloe vera leaves, filleting operation was completed within 24 hours to avoid decomposition of the biological activities. Thereafter, the aloe gel fillets were crushed and homogenized using a commercial high-speed blender within 3 minutes at room temperature (25°C). This process was to prevent the reaction of enzymatic browning, since the longer the grinding time, the higher the browning index of aloe vera gel juice (Liu, 2001).

This study conducted enzyme treatment where the AG was subjected to double boiling method for 50°C within 20 min as cited by Ramachandra, et al., (2008) from the procedure of Maughan (1984) to reduce the loss of

ISSN No. 2321-2705 | DOI: 10.51244/IJRSI | Volume XII Issue IX September 2025

biological activity of polysaccharide (55%) in aloe vera gel (Luta and McAnalley, 2005). To stabilize and preserved the aloe gel, its juice was fortified with citric acid naturally present and abundant in citrus fruits such as the lemon. This was also used to avoid enzymatic browning reaction, thereby improving the quality of aloe gel. Thereafter, the pH of aloe gel was adjusted between 3.0 and 3.5 using a pH meter paper.

Pasteurization process on other hand was done through HTST (high temperature in short time) treatment at 85-95°C for 1-2 mins, as it is an effective method to avoid the loss of biological activity of the aloe gel (Eshun, 2003). Thereafter, the juice was flashed cooled to 5°C within 10-15 seconds to preserve biological activity of the aloe vera gel.

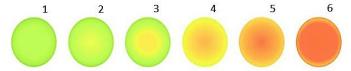
Experimental Design and Lay-out

Aloe gel (AG) concentration used in this study were 5%, 10%, 15%, 20%, 25%, and 30% in 500 ml water. The lower aloe gel concentrations were further evaluated in the in vivo test. Experiment was laid-out in a Completely Randomized Design (CRD) with seven (7) treatments replicated three (3) times at three (3) sample fruits per replication or a total population of 63 fruits for each crop.

In vivo Test

Efficacy of the lower aloe gel concentration in extending shelf-life, maintaining physical quality, and disease incidence and severity reduction was evaluated. Treatments used were T1-Control (untreated), T2 - 5% AG, T3 - 10% AG, T4 - 15% AG, T5 - 20% AG, T6 - 25% AG, T7 - 30% AG.

Data Gathered


The fruit samples were observed visually in daily manner for weight loss, and with a time interval of two days for visual aspect such as shrinkage or shriveling, color change of the skin, microbial growth, softening nature until it reached visual quality rating (VQR) of 3 which is the limit of marketability.

Cumulative Weight loss (CWL)

Weights of the three (3) samples fruits in each treatment were recorded daily. Cumulative weight loss was calculated with the formula: %CWL = Wi - Wd / Wi (100) where: CWL = cumulative weight loss (%); Wi = initial weight (g); and Wd = weight at date of observation (g).

Ripening Color

Fruit color was evaluated through a standard color chart for ripening index of tomato, and bell pepper, used by Barua, et al., (2018). Standard color chart below was used.

Source: Barua et al. Advances in Agricultural Science 6 (2018), 03:49-60

Visual Quality Rating (VQR)

Scale used in this study followed the VQR used by Bayogan, et al., (2019) to measure the visual quality of the crops applied with aloe vera gel which was based from 1- excellent, field fresh; 2- Very good, minor defects; 3-fair, moderate defects, limit of marketability; 4- poor, defects serious, usable but not saleable; and 5- limit of edibility, non-edible under usual conditions.

Firmness

Scale used in this study followed the index used by Bayogan, et al., (2019) with slight modification, to measure

ISSN No. 2321-2705 | DOI: 10.51244/IJRSI | Volume XII Issue IX September 2025

the firmness of the fruits occurs with the application of aloe gel. This was done by pressing gently the fruits to feel its firmness. The rating scale was 1- firm; 2- slightly soft, (20% soft-80% firm); 3- moderately soft, (50% soft-50% firm) (limit of marketability); 4- severely soft, (75% soft-25% firm), usable but not saleable; and 5- limit of edibility, extreme softness, (>76% soft).

Shriveling Index

Scale used in this study followed the index used by Bayogan, et al., (2019) to measure when the shrinkage of the fruits occurs when applied with aloe vera gel presented as 1- no shriveling; 2- slightly shriveled, (1%-15%); 3-moderate, 16%-30% shriveling (limit of marketability); 4- severe, 31%-49% shriveling; and 5- extreme, ≥ 50 %.

Post-Harvest Disease Incidence (%)

The number of diseased fruits (Df) was counted on every two days after treatment application. Then the values of mean per data collection were calculated with the formula: %PHD = Df/n (100) where; %PHD = (%) post-harvest decay; Df = number of decayed fruits; and n = total population of fruits.

Post-Harvest Disease Severity (%)

Fruit samples were visually evaluated. All fruits from each treatment were used for the evaluation. A fruit was considered as decayed when the development of surface microbial inoculum such as the mycelia/conidia/conidiophores and bacterial oozing were visually observed. scale used was 1- no infection or symptoms; 2- trace infection (1%-10%); 3- slight infection (11%-25%); 4- moderate infection (26%-50%); 5- severe infection (>50%).

Statistical Analysis

Collected data were analyzed using the Analysis of Variance (ANOVA), following the Completely Randomized Design (CRD) and the significant difference among treatment means were compared using Tukey's Honest Significant Difference (THSD)

RESULTS AND DISCUSSION

Effects of Aloe Gel to Weight Loss

Weight loss of eggplant, tomato, and bell pepper was inevitable in normal condition. However, in this study, there was a significant difference among treatment means as affected by the application of aloe gel (Table 1.a-c). Eggplant showed a significant difference as early as day 1 (D1) with the lowest weight loss of 4.88% obtained from T7-30% AG (Table 1.a). Additionally, the aloe gel-treated eggplant were comparable to the untreated (T1-control) samples, hence a trend on reduced weight loss was observed within seven (7) days of observation.

Table 1.a. Mean percentage of the cumulative weight loss (CWL) of eggplant applied with the different concentration of aloe (A. barbadensis) gel (AG)

TREATMENT	DAYS OF APPLICATION											
IKEAIWENI	D1	D2	D3	D4	D5	D 6	D 7					
T1 - Control	6.51 ^b	11.89c	17.17 ^b	21.7 ^b	24.77 ^b	28.10 ^b	31.63 ^b					
T2 - 05% AG	6.09^{ab}	10.79^{bc}	14.30a	17.49a	21.17^{ab}	24.24^{ab}	27.65ab					
T3 - 10% AG	5.56ab	9.99^{ab}	13.64 ^a	17.35a	21.15ab	24.17^{ab}	26.46^{a}					
T4 - 15% AG	5.43 ^{ab}	9.64^{ab}	13.52a	17.22^{a}	21.07^{ab}	23.12^{a}	26.23^{a}					
T5 - 20% AG	5.38ab	9.54^{ab}	13.12 ^a	16.70 ^a	19.69^{a}	22.97^{a}	25.64^{a}					
T6 - 25% AG	5.21^{a}	8.49^{a}	12.65 ^a	15.92a	19.04^{2}	21.73^{a}	24.11^{a}					
T7 - 30% AG	4.88^{a}	8.53a	12.52a	16.02a	18.91 ^a	21.50^{a}	24.10 ^a					
CV (%)	8.03	5.47	7.44	6.59	7.17	7.11	6.15					
Pr (> F)	0.0098	0.0000	0.0012	0.0004	0.0045	0.0053	0.0010					

ISSN No. 2321-2705 | DOI: 10.51244/IJRSI | Volume XII Issue IX September 2025

Means with the same letter are not significantly different at 5% level; ^{ns} – not significance; and values are the means of the three replications.

Application of aloe gel on eggplants had an evident result in reducing the weight loss than the untreated eggplant samples. Aloe gel at 30% obtained the lowest weight loss from day 1 to 7 after application, followed by the eggplants treated with 25% aloe gel which recorded the lowest weight loss on day 2 and 4. Moreover, on 3 to 4 days, there was a relatively higher difference between the untreated and treated samples, statistically (Table 1.a.). This can be the result of the ability of aloe vera gel to limit moisture loss as coating of the fruits (Nicolau-Lapena et al., 2021). It is also explained by Morillon et al. (2002) that the reduced weight loss is an effect of applying aloe gel as it enables the formation of barrier to water diffusion between fruit and the environment that reduces the external transference. Moreover, the polysaccharide composition of aloe vera gel also plays a role in limiting moisture loss (Perez-Gago et al., 2002; Ni et al., 2004).

Further, aloe gel-treated tomato (Table 1.b.) and bell pepper (Table 1.c.) fruits showed no significant difference among treatments means. This implied that the application of aloe gel at lower concentration was ineffective in reducing its weight losses. Thus, the efficacy of aloe gel to the reduction of weight losses of tomato and bell pepper relies on its concentration level. The result of this study was in partial agreement with the study of Dadzie, et al, (2021) aloe-coating on tomatoes was not effective as no significant changes were found on weight loss during 7- or 14-days' storage comparing to the control

Table 1.Mean percentage of the cumulative weight loss (CWL) of tomato applied with the different concentration of aloe (A. barbadensis) gel (AG)

TREATMENT		DAYS OF APPLICATION													
IREATMENT	D1	D3	D5	D7	D9	D11	D13	D15	D17	D19	D21				
T1 - Control	3.81	8.20	11.82	15.35	16.78	18.41	19.60	21.28	22.47	24.16	26.09ns				
T2 - 05% AG	3.30	5.07	7.04	8.36	9.02	11.00	12.55	14.52	16.07	16.72	18.92^{ns}				
T3 - 10% AG	2.94	5.39	7.11	8.10	9.83	10.82	12.31	14.04	15.53	17.01	18.02^{ns}				
T4 - 15% AG	3.24	5.03	6.06	7.54	8.26	9.74	12.02	13.24	14.76	15.57	$17.05^{\rm ns}$				
T5 - 20% AG	3.52	5.28	6.29	7.54	8.54	9.80	10.81	12.07	13.57	14.83	16.09^{ns}				
T6 - 25% AG	3.13	4.16	5.92	6.99	7.73	9.09	10.45	12.07	13.34	14.38	$15.45^{\rm ns}$				
T7 - 30% AG	2.77	4.12	5.42	6.44	7.71	9.24	9.75	10.71	11.72	13.45	13.91ns				
CV (%)	62.9	48.9	47.3	53.6	49.54	43.87	38.31	34.81	30.47	29.18	27.41				
Pr (> F)	0.99	0.56	0.34	0.32	0.30	0.30	0.27	0.24	0.20	0.21	0.14				

Means with the same letter are not significantly different at 5% level; ns – not significance; and values are the means of the three replications.

In tomato fruits, aloe gel had no significant effect on weight loss from 1 to 21 days after treatment application. However, there was a slight difference of means between the untreated and treated tomatoes. Similarly, Chrysargyris et al. (2016) reported that there was no significant difference in the respiration rates of tomato where carbon loss in respiration is included in summing up the weight loss of fruits and vegetables other than the moisture loss by transpiration (Becker and Fricke, 1996).

Table 1. Mean percentage of the cumulative weight loss (CWL) of bell pepper applied with the different concentration of aloe (A. barbadensis) gel (AG)

TREATMENT		DAYS OF APPLICATION													
IKEAIMENI	D1	D2	D3	D 4	D5	D 6	D 7	D8	D9	D10	D11	D12			
T1 - Control	12.79	20.34	28.31	35.62	41.60	46.69	51.78	55.99	61.16	65.37	68.44	71.54 ^{ns}			
T2 - 05% AG	11.97	19.14	26.86	33.53	39.44	45.23	50.52	54.50	59.24	63.82	68.01	$70.16^{\rm ns}$			
T3 - 10% AG	11.78	19.57	26.85	32.95	39.00	44.69	50.79	54.11	58.66	62.59	67.39	$70.67^{\rm ns}$			
T4 - 15% AG	11.19	18.21	25.71	31.96	37.51	43.59	49.90	52.46	57.34	61.92	65.30	68.46^{ns}			
T5 - 20% AG	11.23	17.50	24.34	31.75	37.23	43.27	49.28	52.84	57.76	61.59	65.43	68.76^{ns}			
T6 - 25% AG	10.55	16.77	24.11	31.20	37.13	42.34	48.92	52.82	57.43	61.11	65.49	68.63^{ns}			
T7 - 30% AG	10.26	16.16	22.78	29.71	35.92	41.86	47.45	50.55	55.27	59.36	63.37	66.52^{ns}			
CV (%)	12.83	12.88	9.73	7.88	7.72	6.40	6.10	5.86	5.46	4.51	3.64	3.09			
Pr (> F)	0.44	0.33	0.17	0.21	0.35	0.42	0.69	0.51	0.46	0.27	0.19	0.16			

ISSN No. 2321-2705 | DOI: 10.51244/IJRSI | Volume XII Issue IX September 2025

Means with the same letter are not significantly different at 5% level; ns – not significance; and values are the means of the three replications.

For the weight loss of bell pepper, the findings of the present study showed no significant difference which indicates that aloe vera gel do not affect the weight loss of bell pepper. On the other hand, there was a slight difference of means of bell pepper treated with 30% aloe vera gel among other treatments but were statistically insignificant. It contradicts to the study Kumara et al. (2019), where bell peppers have low weight loss when applied with aloe vera.

Loss of weight observed in fruit can be also ascribed to water loss caused by metabolic activities during transpiration and respiration (Nicolau-Lapena et al., 2021). The reduced weight loss of treated eggplant in this study can be explained by the ability of aloe vera coating to limit moisture loss. The high rate of weight loss recorded for untreated can be partly explained by an increased rate of metabolic activities or higher rate of moisture evaporation caused by the higher environmental temperature (Dadzie, et al, 2021).

Effects of Aloe Gel to the Ripening Color of Tomato and Bell Pepper

Treated tomato fruits showed significance difference, comparable to the untreated ones within 3 to 5 days of application (Table 2.a.). However, beyond 7 days of aloe gel application, treatments showed no significance difference. This implies that beyond 7 days of application, changes of color from green (1) to red (6) due to ripening was unstoppable. Factors such as the temperature, maturity of samples, and natural ethylene gas production can be the reason behind this phenomenon. In fact, the tomato fruits pigment content changed during fruit development, while the chlorophyll content is reduced during maturation and carotenoids are produced promptly, thus synthesizing the red pigment lycopene and β -carotene (Santoro, et al. 2028).

In the present study, in control fruits, β -carotene and lycopene content significantly changed the first 5 days of storage, while they remained significantly similar to other levels after 7 days of storage (Table 2.a.). This result also corroborates with the study of Kumar, et al, (2019) in which the aloe coating they used had no profound effect on fruit color. The lightness was decreased, while the redness was increased during storage in both coated and uncoated fruit, and the highest decrease in lightness was observed in 20% AG coated fruit after 14 days of storage.

With respect to the ripening color of tomato, there were significant effects on the 3 and 5 days after treatment. Tomato fruits treated with 30% aloe vera gel has the lowest rate of color change next is the treatment with 25% aloe vera gel after 3 days of treatment application. On the other hand, at the 5 days after application, tomatoes treated with 30% and 15% aloe vera gel have the same results of having the lowest color change. However, in the 7 to 21 days after application, there were no significant changes among all treatments.

Table 2. Mean of the repining color of tomato applied with the different concentration of aloe (A. barbadensis) gel (AG)

TREATMENT					DAYS	OF AP	PLICA	TION				
IKEAIMENI	Initial	D1	D3	D5	D7	D9	D11	D13	D15	D17	D19	D21
T1 - Control	1.11^{ns}	$1.22^{\rm ns}$	2.00^{b}	2.56 ^b	3.44^{ns}	$3.78^{\rm ns}$	4.33^{ns}	4.33^{ns}	$4.56^{\rm ns}$	$4.78^{\rm ns}$	$5.00^{\rm ns}$	5.00ns
T2 - 05% AG	1.11^{ns}	1.11^{ns}	1.33ab	2.11^{ab}	2.56^{ns}	2.56^{ns}	2.67^{ns}	3.11^{ns}	3.44^{ns}	4.22^{ns}	$4.78^{\rm ns}$	$5.00^{\rm ns}$
T3 - 10% AG	1.22^{ns}	1.22^{ns}	1.33ab	1.78^{ab}	2.00^{ns}	2.22^{ns}	3.00^{ns}	3.00^{ns}	3.67^{ns}	$4.11^{\rm ns}$	$4.78^{\rm ns}$	4.89^{ns}
T4 - 15% AG	1.11^{ns}	1.11^{ns}	1.22ab	1.22a	2.11^{ns}	2.89^{ns}	2.89^{ns}	3.00^{ns}	3.67^{ns}	$4.22^{\rm ns}$	$4.78^{\rm ns}$	5.00^{ns}
T5 - 20% AG	$1.00^{\rm ns}$	1.00^{ns}	1.22^{ab}	1.89 ^{ab}	$2.44^{\rm ns}$	3.00^{ns}	3.33^{ns}	3.56^{ns}	$3.89^{\rm ns}$	4.33^{ns}	$4.78^{\rm ns}$	5.00^{ns}
T6 - 25% AG	$1.00^{\rm ns}$	1.00^{ns}	1.11^{a}	1.56ab	2.44^{ns}	3.22^{ns}	3.22^{ns}	3.22^{ns}	3.44^{ns}	3.89^{ns}	4.33^{ns}	$4.67^{\rm ns}$
T7 - 30% AG	$1.00^{\rm ns}$	$1.00^{\rm ns}$	1.00ª	1.22a	$1.78^{\rm ns}$	$3.00^{\rm ns}$	$3.78^{\rm ns}$	$3.78^{\rm ns}$	$4.00^{\rm ns}$	$4.11^{\rm ns}$	$4.22^{\rm ns}$	4.33ns
CV (%)	13.35	17.6	23.43	21.80	24.12	22.84	22.79	20.58	20.19	14.57	11.67	10.19
Pr (> F)	0.46	0.58	0.029	0.007	0.06	0.22	0.19	0.26	0.61	0.73	0.59	0.58

Means with the same letter are not significantly different at 5% level; ns – not significance; and values are the means of the three replications.

Treated bell pepper fruits on the other hand, showed significant difference among treatment means, comparable to the untreated (T1) within 11 days of application (Table 2.b.). However, beyond 12 days of aloe gel application, treatments showed no significance which implies that beyond this duration of storage after application, changes of color from green to red due to ripening continues. Moreover, among treated fruits, T7 - 30% AG showed the highest color change reduction, and only reached the limit of marketability after 11 days of application.

Thus, different concentration of aloe gel resulted to varied sample reaction. This can be explained by the increase of respiration rates and ethylene emission of fruits which can cause fasten ripening of the nearby fruits. This was in agreement with Chrysargyris, et al, (2016) which states that addition of aloe gel did not affect the respiration rates, being in accordance with previous studies when various aloe gel concentrations were tested.

The results of the study agree with the findings of Nasrin et al. (2018), where bell pepper coated with aloe vera gel preserves the color of the fruit. The same findings for apples (Ergun and Satici, 2012), grapes (Serrano et al., 2006) and papaya (Brishti et al., 2013). The delay of color changes can be due to the decrease of ethylene production that delays the ripening, chlorophyll degradation, anthocyanin accumulation and carotenoid synthesis because of the modified atmosphere created by the aloe vera gel (Carrillo-Lopez et al., 2000).

Table 2.b. Mean of the repining color of bell pepper applied with the different concentration of aloe (A. barbadensis) gel (AG)

TREATMENT	DAYS OF APPLICATION												
IKEAIMENI	Initial ^{as}	D1	D2	D3	D4	D5	D6	D 7	D8	D9	D10	D11	D12
T1 - Control	1.00	1.78 ^b	2.44 ^b	3.22c	3.22c	3.33c	3.44 ^b	3.78 ^b	4.33 ^b	4.56b	5.00b	5.00 ^b	5.00 ²⁵
T2 - 05% AG	1.00	1.00a	1.11a	1.89 ^b	1.89 ^b	1.89 ^b	1.89a	2.44a	2.78a	3.33a	4.00a	4.67ab	5.00 ²⁵
T3 - 10% AG	1.00	1.00a	1.11a	1.56ab	1.56ab	1.56ab	2.00^{a}	2.22a	2.89ª	3.11a	3.67a	4.56ab	5.00 ²⁵
T4 - 15% AG	1.00	1.00a	1.00a	1.67ab	1.67ab	1.67ab	2.00^{a}	2.56a	2.78a	3.22a	3.78ª	4.56ab	5.00 ²⁵
T5 - 20% AG	1.00	1.00a	1.00a	1.33a	1.33a	1.33a	1.56a	2.33a	2.33a	3.11a	3.56a	4.22a	5.00 ²⁵
T6 - 25% AG	1.00	1.00a	1.00a	1.33a	1.33a	1.33a	1.78ª	2.33a	2.67a	2.89a	3.56a	4.11a	5.00 ²⁵
T7 - 30% AG	1.00	1.00a	1.00a	1.33a	1.33a	1.33a	1.67a	2.00^{a}	2.44a	2.89a	3.44a	4.00a	5.00 ²⁵
CV (%)		6.48	10.18	10.12	10.12	9.18	16.66	11.60	11.01	9.36	7.55	5.91	
Pr (> F)		0.000	0.000	0.000	0.000	0.000	0.0002	0.0001	0.000	0.0002	0.0002	0.0045	

Means with the same letter are not significantly different at 5% level; ns – not significance; and values are the means of the three replications.

Ethylene is responsible for the ripening of fruits and vegetables. Chrysargyris et al. (2016) indicates that aloe vera gel decreases the ethylene production as it limits the gas permeability in fruit surface. In addition, during ripening, the chlorophyll present in the fruit decreases that causes to the synthesis of carotenoids that is responsible for pigment changing (Guo et al., 2020). In the present study, the delay of color change might be due to the reduction of carotenoids that is related to the reduced ethylene emissions (Chrysargyris et al., 2016) which causes the delay of ripening.

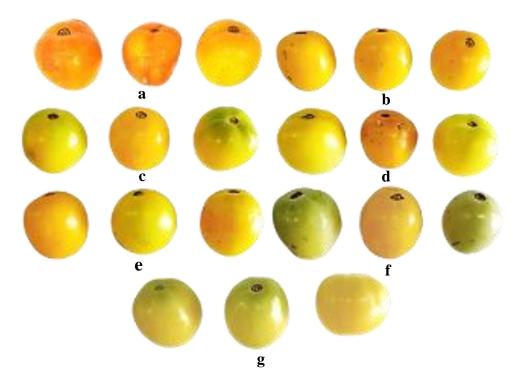
Effects of Aloe Gel to the Visual Quality

Among the crops used in this study, only the eggplant and bell pepper showed significant difference among treatment means within its particular duration (Table 3.a.). Eggplant treated with 30% aloe gel obtained the highest visual quality with only 1.89 (excellent to good) after 7 days of aloe gel application (Figure 1).

Table 3.a. Mean percentage of the visual quality rating (VQR) of eggplant applied with the different concentration of aloe (A. barbadensis) gel (AG)

TREATMENT		DAYS OF APPLICATION											
IREAIMENI	Initial	D1	D2	D3	D4	D5	D6	D 7					
T1 - Control	1.00	1.00	1.89c	2.78^{d}	3.67c	4.78^{c}	5.00°	5.00°					
T2 - 5% AG	1.00	1.00	1.44 ^b	2.00^{c}	2.44^{b}	3.11^{b}	4.22^{bc}	4.44 ^{bc}					
T3 - 10% AG	1.00	1.00	1.44 ^b	2.00^{c}	2.22^{b}	2.89^{b}	3.67^{bc}	3.89^{bc}					
T4 - 15% AG	1.00	1.00	1.11^{ab}	1.56^{bc}	2.22^{b}	2.89^{b}	3.78^{bc}	3.89^{bc}					
T5 - 20% AG	1.00	1.00	1.00^{a}	1.67^{bc}	2.44 ^b	2.78^{b}	3.44^{b}	3.78^{bc}					
T6 - 25% AG	1.00	1.00	1.00^{a}	1.44^{ab}	1.89^{ab}	2.33^{b}	2.89^{ab}	3.00^{ab}					
T7 - 30% AG	1.00	1.00	1.00^{a}	1.00^{a}	1.22a	1.44^{a}	1.67^{a}	1.89^{a}					
CV (%)			11.52	10.02	13.46	10.66	14.00	16.57					
Pr (> F)			0.0000	0.0000	0.0000	0.0000	0.0000	0.0007					


ISSN No. 2321-2705 | DOI: 10.51244/IJRSI | Volume XII Issue IX September 2025


Means with the same letter are not significantly different at 5% level; ^{ns} – not significance; and values are the means of the three replications.

Treated samples were also comparable to untreated ones which implied that the application of aloe gel had a potential in improving the visual quality of eggplant due to the formation of an impermeable layer that limits the exchange of moisture and gases such as oxygen and carbon dioxide between the fruit and the environment (Nicolau-Lapena et al., 2021). This phenomenon resulted in a decrease in moisture loss and respiration, consequently, minimizing loss of fruit quality in terms of weight, firmness and color.

Figure 1. visual appearance of eggplant as affected by the different aloe gel cocentration after 7 days of application (a) control(untreated,(b) 5% aloe gel,(c)10% aloe gel, (d)15% aloe gel,(e) 20% aloe gel, (f) 25%% aloe gel, (g)30% aloe gel.

Figure 2.Visual appearance of tomato fruits as affected by the different aloe gel concentration after 7 days of application (a) control (untreated), (b)5% Aloe gel (c) 10% Aloe gel, (d) 15% aloe gel, (e) 20% aloe gel, (f) 25% aloe gel, (g)30% aloe gel.

This study has the same results of Gonzales and Benitez (2019), where the application of aloe vera gel maintained the VQR that results in longer shelf life. The effect could be caused by the aloe vera gel generating a modified atmosphere that enables to preserve the visual quality of the eggplants by delaying the ripening and physicochemical quality of the fruit (Gol and Rao, 2011). Also, Kittur et al. (2001) states that polysaccharide-based coatings slow the metabolism which in turn extends the shelf of a fruit.

ISSN No. 2321-2705 | DOI: 10.51244/IJRSI | Volume XII Issue IX September 2025

Aloe gel-treated tomato on the other hand however showed significant difference among treatment means within 11-13 days (Figure 2), but beyond 15 days, all the treatments showed no significant difference (Table 3.b). This phenomenon can be best explained by the immediate effect of aloe gel application which resulted to decreased fruit ethylene emission for only 13 days while after 15 days of application, increased ethylene emission and respiration rates could be inevitable as the coating compound of aloe gel must be degraded due to the environment (Tzortzakis, et al. 2019).

Table 3.b. Mean percentage of the visual quality rating (VQR) of tomato applied with the different concentration of aloe (A. barbadensis) gel (AG)

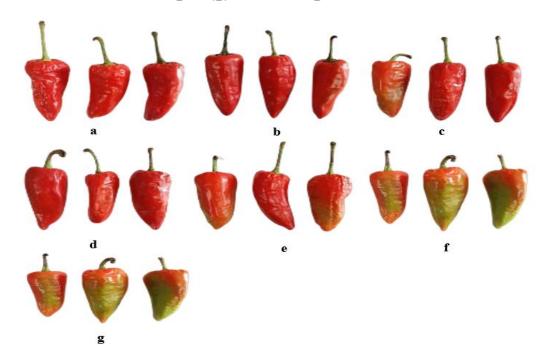
TEDERATEMEN	DAYS OF APPLICATION													
TREATMENT	Initial	D1	D3	D5	D7	D9	D11	D13	D15	D17	D19	D21		
T1 - Control	1.00	1.00	1.00	1.00	1.11	1.22	1.67 ^b	2.00^{b}	2.33^{ns}	3.00^{ns}	3.33^{ns}	3.78^{ns}		
T2 - 05% AG	1.00	1.00	1.00	1.00	1.00	1.11	1.33ab	2.00^{b}	2.22^{ns}	2.89^{ns}	3.33^{ns}	3.56^{ns}		
T3 - 10% AG	1.00	1.00	1.00	1.00	1.00	1.00	1.22ab	2.00^{b}	2.11^{ns}	2.44^{ns}	3.00^{ns}	3.22^{ns}		
T4 - 15% AG	1.00	1.00	1.00	1.00	1.00	1.00	1.22ab	2.00^{b}	2.11^{ns}	2.56ns	3.00^{ns}	3.11^{ns}		
T5 - 20% AG	1.00	1.00	1.00	1.00	1.00	1.00	1.33ab	2.00^{b}	2.00^{ns}	2.67ns	3.11 ^{ns}	3.33^{ns}		
T6 - 25% AG	1.00	1.00	1.00	1.00	1.00	1.00	1.00^{a}	1.89 ^b	1.89ns	2.33ns	2.67 ^{ns}	3.00^{ns}		
T7 - 30% AG	1.00	1.00	1.00	1.00	1.00	1.00	1.00^{a}	1.56a	1.78 ^{ns}	2.11 ^{ns}	2.56 ^{ns}	2.78 ^{ns}		
CV (%)					7.09	9.73	12.97	5.38	9.93	13.28	10.83	10.74		
Pr (> F)					0.4628	0.1095	0.0028	0.0008	0.0679	0.0752	0.0692	0.0538		

Means with the same letter are not significantly different at 5% level; ns – not significance; and values are the means of the three replications.

In addition, visual quality of aloe gel-treated bell peppers had also improved (Table 3.c). Fruits treated with 25%-30% aloe gel resulted with a significant difference among treatment means. Moreover, all the concentration (5%-30%) used in this study had improved the visual quality of bell peppers within 12 days of observation. Thus, implying that post-harvest losses of bell peppers could be reduced by the application of aloe gel.

Table 3.c. Mean of the visual quality rating (VQR) of bell pepper applied with the different concentration of aloe (A. barbadensis) gel (AG)

TREATMENT		DAYS OF APPLICATION													
IKEAIMENI	Initial	D1	D2	D3	D4	D5	D6	D 7	D8	D9	D10	D11	D12		
T1 - Control	1.00	1.11	1.67 ^b	2.22c	2.56 ^d	2.67 ^b	3.00 ^c	3.44 ^c	3.78 ^c	4.22c	5.00 ^b	5.00 ^b	5.00c		
T2 - 05% AG	1.00	1.00	1.11^{a}	1.89bc	2.00^{cd}	2.33^{b}	2.56bc	2.89^{bc}	3.00^{bc}	3.33bc	4.44^{b}	5.00^{b}	5.00^{c}		
T3 - 10% AG	1.00	1.00	1.00^{a}	1.44 ^{ab}	1.89bc	2.00^{ab}	2.11^{b}	2.44^{ab}	2.56^{ab}	2.67^{ab}	3.11^{a}	4.11^{a}	4.89^{bc}		
T4 - 15% AG	1.00	1.00	1.00^{a}	1.00^{a}	1.44^{abc}	1.67^{ab}	2.11^{b}	2.44^{ab}	2.44^{ab}	2.56^{ab}	3.44^{a}	4.00^{a}	4.67^{b}		
T5 - 20% AG	1.00	1.00	1.00^{a}	1.00^{a}	1.33ab	1.67^{ab}	2.11^{b}	2.22^{ab}	2.22ab	2.56^{ab}	3.44^{a}	4.11^{a}	4.78^{bc}		
T6 - 25% AG	1.00	1.00	1.00^{a}	1.00^{a}	1.00^{a}	1.22^{a}	1.44^{a}	1.89^{a}	2.00^{ab}	2.44^{ab}	3.22^{a}	3.89^{a}	4.33^{a}		
T7 - 30% AG	1.00	1.00	1.00^{a}	1.00^{a}	1.11 ^a	1.11 ^a	1.22a	1.56ª	1.56 ^a	2.22^{a}	3.00^{a}	3.78^{a}	4.33a		
CV (%)		7.09	13.11	13.12	14.22	21.64	10.46	14.15	15.59	13.02	7.42	4.46	2.16		
Pr (> F)		0.4628	0.0004	0.000	0.000	0.0023	0.000	0.0002	0.0002	0.0002	0.000	0.000	0.000		


Means with the same letter are not significantly different at 5% level; ^{ns} – not significance; and values are the means of the three replications.

According to Nicolau-Lapeña, et al., (2021), the bioactive compounds of aloe gel are aloin, aloe emodin, anthraquinones and acemannan. Similar to this, Shabir, et al., (2021) resulted that Guava coated with 2% CaCl₂ and 10% Aloe vera gel promisingly retained physico-chemical characteristics and also maintained the sensory attributes than all the other treatments performed and was found to be most effective treatment in maintaining the fruit quality attributes along with the shelf-life extension for 35 days.

ISSN No. 2321-2705 | DOI: 10.51244/IJRSI | Volume XII Issue IX September 2025

Figure 3. Visual appearance of bell pepper fruits as affected by the different aloe gel concentration after 7 days of application, (a) control (untreated), (b) 5% aloe gel, (c)10% aloe gel, (d) 15% aloe gel, (e) 20% aloe gel, (f) 25% aloe gel, (g) 30% aloe gel

Effects of Aloe Gel to the Firmness

Eggplant treated with 20%-30% of aloe gel showed significant difference among treatments. Treated samples were also comparable to untreated ones within 7 days of observation which implied that application of aloe gel could retain the firmness of eggplant thus leading to improved physical quality (Table 4.a). Similar results obtained from Dang et al. (2008) reported that mangoes-maintained firmness when 100% of aloe gel was used at shelf-life storage of the fruit.

Fruit firmness of eggplant was significantly affected by the application of aloe vera gel. Eggplants treated with 25% and 30% aloe vera gel has gradual changes in fruit firmness. Hasan et al. (2021) also has a positive effect in terms of fruit firmness using aloe vera gel. The firmness also relates to the weight loss of fruits (Marpudi et al., 2011) as reported in sweet cherry (Yaman and Bayoindirli, 2002) and nectarine fruits (Ahmed et al., 2009).

Table 4.a. Mean percentage of firmness of eggplant with the application of different concentration of aloe (A. barbadensis) gel (AG)

TREATMENT			DAY	S OF AF	PLICAT	ION		
IKEATMENT	Initial	D1	D2	D3	D 4	D5	D6	D 7
T1 - Control	1.00	1.00	1.78^{b}	2.44^{b}	3.00^{b}	3.00^{b}	3.44^{b}	4.22 ^b
T2 - 05% AG	1.00	1.00	1.22a	1.67a	1.78 ^b	2.11^{ab}	2.78^{ab}	3.44^{ab}
T3 - 10% AG	1.00	1.00	1.00^{a}	1.56^{a}	1.89^{ab}	1.89^{ab}	2.78^{ab}	3.22^{ab}
T4 - 15% AG	1.00	1.00	1.00^{a}	1.67^{a}	1.78 ^b	1.89^{ab}	2.56^{ab}	3.11^{ab}
T5 - 20% AG	1.00	1.00	1.00^{a}	1.56^{a}	1.89^{ab}	1.89^{ab}	2.33^{a}	2.78^{a}
T6 - 25% AG	1.00	1.00	1.00^{a}	1.56^{a}	1.67a	1.67a	2.11a	2.78^{a}
T7 - 30% AG	1.00	1.00	1.00^{a}	1.11 ^a	1.78 ^a	1.78ª	1.78ª	2.33a
CV (%)			8.91	14.68	20.86	20.21	14.84	14.55
Pr (> F)			0.000	0.0007	0.0190	0.0236	0.0025	0.0050

Means with the same letter are not significantly different at 5% level; ^{ns} – not significance; and values are the means of the three replications.

Treated tomato fruits on the other hand, had different result from eggplant as shown in the Table 4.b, where treated aloe gel fruits only showed significant difference within 13-15 days, while beyond 17 days, there was no significant difference which means that firmness of tomato lessens during storage for both treated and untreated.

Fruit firmness significantly decreased in control fruits during the entire storage period). The application of aloe gel led to lower softening in tomato following 15 days of storage compared to the control, but this effect did not persist after 17 days of storage. Similar to this findings, Martínez-Romero et al, (2013) reported that higher aloe gel concentration substantially decreased the firmness losses (≥50%) during storage of cherries.

Table 4.b. Mean percentage of firmness of tomato with the application of the different concentration of aloe (A. barbadensis) gel (AG)

TDEATMENT	DAYS OF APPLICATION													
TREATMENT	Initialns	D1 ^{ns}	D3ns	D5 ^{ns}	D7 ^{ns}	D9 ^{ns}	D11 ^{ns}	D13	D15	D17 ^{ns}	D19ns	D21 ^{ns}		
T1 - Control	1.00	1.00	1.00	1.00	1.00	1.00	1.11	1.78c	2.00^{a}	2.44	3.00	3.00		
T2 - 05% AG	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.44 ^b	2.00^{a}	2.11	2.67	3.00		
T3 - 10% AG	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00^{a}	1.89^{a}	2.00	2.56	2.89		
T4 - 15% AG	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00^{a}	1.78^{a}	1.78	2.44	2.56		
T5 - 20% AG	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00^{a}	1.89^{a}	2.33	2.89	3.11		
T6 - 25% AG	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00^{a}	2.00^{a}	2.00	2.67	3.00		
T7 - 30% AG	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00^{a}	1.67a	2.00	2.33	2.67		
CV (%)	-	-	-	-	-	-	7.09	8.80	6.60	8.50	12.62	12.32		
Pr (> F)	-	-	-	-	-	-	0.4628	0.000	0.0376	0.0073	0.2566	0.4759		

Means with the same letter are not significantly different at 5% level; ns – not significance; and values are the means of the three replications.

Table 4.c. Mean of firmness of bell pepper with the application of different concentration of aloe (A. barbadensis) gel (AG)

TREATMENT	DAYS OF APPLICATION													
IKLAIMENI	Initial	D1	D2	D3	D4	D5	D6	D 7	D8	D 9	D10	D11	D12	
T1 - Control	1.00	1.00	1.11	1.44	2.11 ^b	2.44^{a}	3.00	3.22a	3.44 ^b	4.00^{c}	4.00^{b}	4.89^{d}	5.00 ^b	
T2 - 05% AG	1.00	1.00	1.00	1.33	2.00^{b}	2.33^{a}	2.67	2.89^{a}	3.22^{b}	3.56 ^{bc}	3.78^{ab}	4.44 ^{cd}	5.00^{b}	
T3 - 10% AG	1.00	1.00	1.00	1.11	1.89 ^{ab}	2.11^{a}	2.78	2.89^{a}	3.00^{ab}	3.11^{ab}	3.56ab	4.22^{bc}	5.00^{b}	
T4 - 15% AG	1.00	1.00	1.00	1.22	1.78^{ab}	1.89^{a}	2.56	2.67^{a}	3.00^{ab}	3.22ab	3.56ab	4.22^{bc}	5.00^{b}	
T5 - 20% AG	1.00	1.00	1.00	1.11	1.89^{ab}	2.22^{a}	2.56	2.56^{a}	2.89^{ab}	3.11^{ab}	3.56^{ab}	4.00^{abc}	4.89^{b}	
T6 - 25% AG	1.00	1.00	1.00	1.11	1.22^{a}	1.89^{a}	2.44	2.44^{a}	2.56^{a}	2.78^{a}	3.33^{a}	3.67^{a}	4.33^{a}	
T7 - 30% AG	1.00	1.00	1.00	1.00	1.56 ^a	2.00^{a}	2.11	2.44^{a}	2.56^{a}	2.89^{a}	3.22^{a}	3.78^{a}	4.22a	
CV (%)			7.09	13.63	14.12	9.69	12.62	10.35	6.98	7.77	5.80	3.88	3.40	
Pr (> F)			0.4628	0.0612	0.0113	0.0311	0.1086	0.0396	0.0010	0.0006	0.0077	0.000	0.000	

Means with the same letter are not significantly different at 5% level; ns – not significance; and values are the means of the three replications.

In addition, bell peppers treated with 25%-30% aloe gel showed significant difference among treatments means with 12 days of observation and was comparable to untreated ones (Table 4.c.), which implies that the application of aloe gel with this concentration level is effective to retain the commodity's firmness. Furthermore, partially similar to this result was by Dang et al. (20080 reported that mangoes-maintained firmness when 100% of aloe gel was used at shelf-life storage of the fruit. Therefore, its effects might be related to the higher aloe gel ratio and different species used.

Effects of Aloe Gel to the Shrinkage

Eggplant treated with 30% of aloe gel showed significant difference among treatments (Table 5.a). Treated samples were also comparable to untreated ones within 7 days of observation which implied that application of aloe gel could reduce the shrinkage of eggplant thus leading to improved physical quality and higher marketability.

ISSN No. 2321-2705 | DOI: 10.51244/IJRSI | Volume XII Issue IX September 2025

Table 5.a. Mean percentage of shrinkage index of eggplant with the application of different concentration of aloe (A. barbadensis) gel (AG)

TREATMENT		DAYS OF APPLICATION												
IKEAIMENI	Initial ^{ns}	D1 ^{ns}	D2ns	D3	D4	D 5	D 6	D7						
T1 - Control	1.00	1.00	1.33	2.00^{b}	2.22^{c}	3.00^{c}	3.56^{b}	4.33c						
T2 - 05% AG	1.00	1.00	1.33	1.56^{ab}	2.11bc	2.56^{bc}	3.00^{ab}	3.89^{bc}						
T3 - 10% AG	1.00	1.00	1.00	1.44^{ab}	2.11bc	2.33^{b}	2.44^{ab}	3.33^{b}						
T4 - 15% AG	1.00	1.00	1.00	1.33ab	1.89^{bc}	2.11^{ab}	2.44^{ab}	3.22^{b}						
T5 - 20% AG	1.00	1.00	1.00	1.33ab	2.11^{bc}	2.11^{ab}	2.67^{ab}	3.33^{b}						
T6 - 25% AG	1.00	1.00	1.00	1.11^{a}	1.56ab	2.00^{ab}	2.22^{a}	3.11ab						
T7 - 30% AG	1.00	1.00	1.00	1.00^{a}	1.00^{a}	1.67a	2.00^{a}	2.33a						
CV (%)	-	-	-	20.23	11.75	9.67	16.19	8.39						
Pr (> F)	-	-	-	0.0152	0.0001	0.0001	0.0092	0.0000						

Means with the same letter are not significantly different at 5% level; ^{ns} – not significance; and values are the means of the three replications.

Treated tomato fruits however showed significant difference only after 17 days of application where the application of 30% aloe gel obtained shrinkage index of 1.78 presented in Table 5.b, and beyond 19 days, it can also be observed that there was no significant difference which means that shrinkage of tomato continues during storage even if treated with different concentration of aloe gel.

Table 5.b. Mean percentage of shrinkage index of tomato with the application of different concentration of aloe (A. barbadensis) gel (AG)

TREATMENT	DAYS OF APPLICATION												
	Initialns	D1 ^{ns}	D3ns	D5 ^{ns}	D7 ^{ns}	D9ns	D11ns	D13ns	D15ns	D17	D19ns	D21ns	
T1 - Control	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.67	1.89ns	2.44 ^b	3.00^{ns}	3.11ns	
T2 - 05% AG	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.33	2.00^{ns}	2.00^{ab}	2.56^{ns}	2.89^{ns}	
T3 - 10% AG	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.78^{ns}	1.89^{ab}	2.44^{ns}	2.78^{ns}	
T4 - 15% AG	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.67ns	1.78^{a}	2.33^{ns}	2.44^{ns}	
T5 - 20% AG	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.78ns	2.22^{ab}	2.78^{ns}	2.89^{ns}	
T6 - 25% AG	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.89ns	1.89^{ab}	2.56ns	2.78^{ns}	
T7 - 30% AG	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.44 ^{ns}	1.78ª	2.11 ^{ns}	2.44 ^{ns}	
CV (%)	-	-	-	_	-	-	-	-	13.62	10.87	14.64	17.29	
Pr (> F)	-	_	-	-	-	-	-	-	0.1962	0.0168	0.1669	0.5975	

Means with the same letter are not significantly different at 5% level; ns – not significance; and values are the means of the three replications.

On the other hand, bell peppers treated with 20%-30% aloe gel showed significant difference among treatments means within 12 days of observation, and was comparable to the untreated ones and lower aloe concentration (5%-15%) as presented in Table 4.c. This event implied that the application of aloe gel with this concentration level is effective to reduce the inevitable shriveling activity of bell pepper fruits due to various factors such as temperature, and maturity index of the crop.

Table 5.c. Mean percentage of shrinkage index of bell pepper with the application of different concentration of aloe (A. barbadensis) gel (AG)

TREATMENT	DAYS OF APPLICATION												
IKEAINENI	Initial	D1	D2	D3	D4	D5	D 6	D7	D8	D9	D10	D11	D12
T1 - Control	1.00	1.00	1.00	1.33ns	2.11 ^b	2.44 ^c	2.89^{d}	3.11 ^c	3.67 ^b	4.11 ^b	4.78^{c}	5.00 ^b	5.00c
T2 - 05% AG	1.00	1.00	1.00	1.22^{ns}	1.44^{a}	2.00^{bc}	2.22^{abc}	2.56^{abc}	2.89^{ab}	3.00^{a}	3.89^{b}	4.22^{a}	5.00^{c}
T3 - 10% AG	1.00	1.00	1.00	1.11 ^{ns}	1.56^{a}	2.11^{bc}	2.56^{cd}	2.56abc	2.67^{a}	3.00^{a}	3.56^{ab}	4.00^{a}	4.89^{c}
T4 - 15% AG	1.00	1.00	1.00	1.11 ^{ns}	1.44^{a}	1.89^{abc}	2.44 ^{bcd}	2.67^{bc}	2.67^{a}	3.00^{a}	3.67^{ab}	4.00^{a}	4.89^{c}
T5 - 20% AG	1.00	1.00	1.00	$1.11^{\rm ns}$	1.33a	1.78 ^{abc}	2.00^{abc}	2.33^{ab}	2.44^{a}	2.89^{a}	3.33ab	3.78^{a}	4.67^{bc}
T6 - 25% AG	1.00	1.00	1.00	$1.00^{\rm ns}$	1.00^{a}	1.33ab	1.78^{a}	1.89^{a}	2.22^{a}	2.78^{a}	3.22^{ab}	3.89^{a}	4.33^{ab}
T7 - 30% AG	1.00	1.00	1.00	1.00ns	1.00^{a}	1.22a	1.89^{a}	2.00^{a}	2.11^{a}	2.44^{a}	3.00^{a}	3.56^{a}	4.11 ^a
CV (%)			•	12.79	16.35	16.42	9.71	10.75	11.93	9.56	7.21	6.43	3.78
Pr (> F)			·	0.1338	0.0007	0.0024	0.0002	0.0010	0.0007	0.0003	0.0000	0.0003	0.0001

ISSN No. 2321-2705 | DOI: 10.51244/IJRSI | Volume XII Issue IX September 2025

Means with the same letter are not significantly different at 5% level; ^{ns} – not significance; and values are the means of the three replications.

Also, according to the study of Nicolau-Lapeña, et al., (2021), aloe gel decreases respiration and ripening processes, delays firmness loss, weight loss, and preserves phenolic content and delays browning of coated fruits and vegetables. Serrano, et al., (2006) also had a similar result in which table grapes coated with aloe gel significantly delayed the ripening changes, as well as it retains citric acid, therefore concluded that aloe vera gel coating as a simple and non-contaminating treatment, maintained the functional properties of table grapes during postharvest storage.

Effects of Aloe Gel to the Incidence and Severity Percentage

During post-harvest storage of solanaceous crops particularly the eggplant, pest and diseases could arise anytime. Fortunately, disease incidence of eggplant within 7 days of storage were lessen with the application of aloe gel as observed on Table 6.a. Among the treatments, 20%-30% aloe gel had lesser disease incidence percentage, being comparable to untreated samples. Within the duration the higher concentration showed a trend of significant difference.

Table 6.a. Mean percentage of disease incidence of eggplant with the application of different concentration of Aloe (A. barbadensis) gel (AG)

TREATMENT	DAYS OF APPLICATION										
	Initial	D1	D2	D3	D4	D5	D6	D 7			
T1 - Control	0.00	0.00	11.11	55.56	77.78°	77.78 ^b	100.00a	100.00 ^b			
T2 - 05% AG	0.00	0.00	0.00	33.33	66.67bc	66.67 ^b	100.00 ^b	100.00 ^b			
T3 - 10% AG	0.00	0.00	0.00	22.22	33.33abc	33.33 ^b	66.67ab	77.78ab			
T4 - 15% AG	0.00	0.00	0.00	0.00	22.22abc	44.44 ^{ab}	44.44ab	44.44ab			
T5 - 20% AG	0.00	0.00	0.00	0.00	11.11 ^{ab}	22.22ab	22.22a	22.22^{a}			
T6 - 25% AG	0.00	0.00	0.00	0.00	11.11 ^{ab}	11.11a	11.11^{a}	11.11a			
T7 - 30% AG	0.00	0.00	0.00	0.00	0.00^{a}	11.11a	11.11 ^a	11.11^{a}			
CV (%)	-	-	458.26	171.47	72.46	63.33	45.29	46.06			
Pr (> F)	· -	ı –	0.4628	0.1378	0.0062	0.0232	0.0005	0.0006			

Means with the same letter are not significantly different at 5% level; ns – not significance; and values are the means of the three replications.

Severity of the diseases was also assessed to determine how severe was, the post-harvest pathogen's infection. And, the study resulted that 20%-30% aloe gel concentration could lessen the infection thus preventing losses due to diseases. The result of this study showed that higher aloe concentration had significant difference and was comparable to untreated one. Aloe gel (AG) according to Martínez-Romero et al., (2006) has shown antimicrobial effects It is believed that coating fruit with preservative compounds generates a modified atmosphere by creating a semipermeable barrier against oxygen, carbon dioxide, moisture, and solute movement, thereby, retarding ripening and senescence, as well as extending the shelf life of fruits and vegetables.

Table 6.b. Mean percentage of disease severity of eggplant with the application of different concentration of Aloe (A. barbadensis) gel (AG)

TREATMENT		DAYS OF APPLICATION										
	Initial	D1	D2	D3	D4	D5	D6	D 7				
T1 - Control	0.00	0.00	2.22	13.33	31.11 ^b	46.67 ^b	66.67c	84.44 ^c				
T2 - 05% AG	0.00	0.00	0.00	6.67	20.00^{ab}	33.33^{ab}	51.11 ^{bc}	62.22bc				
T3 - 10% AG	0.00	0.00	0.00	4.44	11.11 ^{ab}	20.00^{ab}	35.56abc	44.44 ^{abc}				
T4 - 15% AG	0.00	0.00	0.00	0.00	4.44^{a}	15.56ab	24.44^{ab}	28.89^{ab}				
T5 - 20% AG	0.00	0.00	0.00	0.00	2.22^{a}	8.89^{a}	11.11^{a}	15.56^{a}				
T6 - 25% AG	0.00	0.00	0.00	0.00	2.22^{a}	4.44^{a}	6.67^{a}	8.89^{a}				
T7 - 30% AG	0.00	0.00	0.00	0.00	0.00^{a}	2.22^{a}	4.44^{a}	6.67a				
CV (%)	-	-	458.26	181.55	91.69	62.14	45.54	44.98				
Pr (> F)	-	-	0.4628	0.1425	0.0088	0.0032	0.0002	0.0002				

Means with the same letter are not significantly different at 5% level; ns – not significance; and values are the means of the three replications.

ISSN No. 2321-2705 | DOI: 10.51244/IJRSI | Volume XII Issue IX September 2025

Disease incidence and severity was mainly attributed to the anthracnose rot (triggered by Colletotrichum spp) and secondary black spot symptoms (triggered by Alternaria spp.). The observation of fungal symptoms was the indicative of fruit decay but additional research is required for any other physiological or bacterial symptoms presence. Several studies indicated the antimicrobial capacity of naturally produced chemicals in vitro and/or in fresh commodities (Tzortzakis, et al. 2009; Navarro et al, 2011; Castillo et al 2010).

CONCLUSION

This study demonstrated that application of aloe gel aids for the extension of postharvest life of eggplants, tomato, and bell pepper by delaying ripening process, having greater firmness, fruit color, less shriveling, as reflected in lower weight loss and lesser changes in physical parameters. It showed that eggplant coated with 20% to 30% aloe gel significant delay the post-harvest deterioration of the solanaceous crops during storage, compared with untreated control fruits. Coating of eggplant, tomato, and bell pepper fruits at room temperature with aloe gel minimized weight and firmness loss, as well as delayed color changes during storage. In addition, the ripening index of bell pepper and tomato fruits was delayed within 12 days of storage. Moreover, the present study proved the efficiency of aloe gel as an eco-friendly material in improving the post-harvest life of solanaceous crops. This effect can also be related to the higher aloe gel ratio and different species used.

RECOMMENDATION

Further studies should be conducted on the coating properties which might be related to the improvement of hydrophobic properties of the aloe gel and the gaseous exchange towards fruits. New formulation and application developments to different fruit and vegetables may be explored. Further investigation is also needed to elucidate the underlying relationship between aloe gel and the crops.

ACKNOWLEDGMENT

The authors would like to thanks the Monkayo College of Arts, Sciences, and Technology for the opportunity to showcase this study internationally. The institution's support fuels this study to be such an achievement.

Ethical Considerations

Authors of this paper were permitted to conduct the study as one of the institutional research outputs noting that all experimental procedures were performed in accordance with the institutional and scientific guidelines.

Conflict of Interest

The authors declare that there are no conflicts of interest, financial or otherwise that could have influenced the design, execution, interpretation, or reporting of this research.

Data Availability

The data supporting the findings of this study are available from the corresponding author upon reasonable request, as the dataset is not publicly archived.

REFERENCES

- 1. Ahmed, M. J., Singh, Z., & Khan, A. S. (2009). Postharvest Aloe vera gel-coating modulates fruit ripening and quality of 'Arctic Snow'nectarine kept in ambient and cold storage. International journal of food science & technology, 44(5), 1024-1033. https://doi.org/10.1111/j.1365-2621.2008.01873.x
- 2. Ali, A., Bordoh, P. K., Singh, A., Siddiqui, Y., and Droby, S. (2016). Post-harvest development of anthracnose in pepper (Capsicum spp): Etiology and management strategies. Crop protection, 90, 132-141. https://doi.org/10.1016/j.cropro.2016.07.026
- 3. Ali, J., Pandey, S., Singh, V., and Joshi, P. (2016). Effect of coating of aloe vera gelon shelf life of grapes. Current Research in Nutrition and Food Science Journal, 4(1), 58-68. https://dx.doi.org/10.12944/CRNFSJ.4.1.08

ISSN No. 2321-2705 | DOI: 10.51244/IJRSI | Volume XII Issue IX September 2025

- 4. Amanullah, S., Jahangir, M. M., Ikram, R. M., Sajid, M., Abbas, F., and Mallano, A. I. (2016). Aloe vera coating efficiency on shelf life of eggplants at differential storage temperatures. Journal of Northeast Agricultural University (English Edition), 23(4), 15-25. https://doi.org/10.1016/S1006-8104(17)30003-X
- 5. Becker, B. R., & Fricke, B. A. (1996). Transpiration and respiration of fruits and vegetables. Science et Technique du Froid (France). ISBN 0-929355-80-6. https://agris.fao.org/search/en/providers/122439/records/6472299e77fd37171a732f03
- 6. Bonmatin, J. M., Mitchell, E. A., Glauser, G., Lumawig-Heitzman, E., Claveria, F., Van Lexmond, M. B., and Sánchez-Bayo, F. (2021). Residues of neonicotinoids in soil, water and people's hair: A case study from three agricultural regions of the Philippines. Science of the Total Environment, 757, 143822. https://doi.org/10.1016/j.scitotenv.2020.143822
- 7. Brishti, F. H., Misir, J., & Sarker, A. (2013). Effect of biopreservatives on storage life of papaya (Carica papaya L.). International Journal of Food Studies, 2(1). https://old.iseki-food-ejournal.com/index.php/ejournal/article/view/149
- 8. Carrillo-Lopez, A., Ramirez-Bustamante, F., Valdez-Torres, J. B., Rojas-Villegas, R., & Yahia, E. M. (2000). Ripening and quality changes in mango fruit as affected by coating with an edible film. Journal of Food Quality, 23(5), 479-486. https://doi.org/10.1111/j.1745-4557.2000.tb00573.x
- 9. Castillo, S.; Navarro, D.; Zapata, P.J.; Guillén, F.; Valero, D.; Serrano, M.; Martínez-Romero, D. 2010Antifungal efficacy of Aloe vera in vitro and its use as a preharvest treatment to maintain postharvest table grape quality. Postharvest Biol. Technol., 57, 183–188 https://doi.org/10.1016/j.postharvbio.2010.04.006
- 10. Chakraborty, I., and Chattopadhyay, A. R. U. P. (2018). Pre-and post-harvest losses in vegetables. Advances in Postharvest Technologies of Vegetable Crops; Postharvest Biology and Technology Series; Apple Academic Press: Waretown, NJ, USA, 25-87. https://books.google.com.ph/books?hl=en&lr=&id=Pv5cDwAAQBAJ&oi=fnd&pg=PA25&dq=10.%
- 11. Chrysargyris, A. Nikou and N. Tzortzakis (2016). Effectiveness of Aloe vera gel coating for maintaining tomato fruit quality, New Zealand Journal of Crop and Horticultural Science, 44:3, 203-217 https://doi.org/10.1080/01140671.2016.1181661
- 12. Dadzie, R. G., Amoah, R. S., Ampofo-Asiama, J., Quaye, B., Kizzie-Hayford, N., and Abano, E. E. (2021). Improving the storage quality of eggplants (solanum Aethiopicum L.) fruit using aloe Vera gel coating. Journal of Food Technology Research, 8(2), 58-66. https://www.researchgate.net/profile/Rosemond-Dadzie/publication/357529618
- 13. Dang, K.T.H.; Singh, Z.; Swinny, E.E. Edible coatings influence fruit ripening, quality, and aroma biosynthesis in mango fruit. J. Agric. Food Chem. 2008, 56, 1361–1370. https://doi.org/10.1021/jf072208a
- 14. Ergun, M., & Satici, F. (2012). Use of Aloe vera gel as biopreservative for 'Granny Smith'and 'Red Chief'apples. https://dlwqtxts1xzle7.cloudfront.net/42580003/2012
- 15. Eshun, K., (2003). Studies on aloe vera gel: Its application in beverage preparation and quality assessment. Thesis submitted to Food Science and Technology School of Southern Yangtze University in partial fulfillment of the requirements for the Degree of Master of Science.
- 16. Flores, E. D., Cruz, R. S. D., and Antolin, M. C. R. (2018). Postharvest Handling Systems and Losses of Eggplant in Major Producing Areas of the Philippines. Asian Journal of Postharvest and Mechanization, 1(1), 93. https://www.philmech.gov.ph/resources/journal/2018
- 17. García, M. A., Ventosa, M., Díaz, R., Falco, S., & Casariego, A. (2014). Effects of Aloe vera coating on postharvest quality of tomato. Fruits, 69(2), 117-126. https://www.cambridge.org/core/journals/fruits/article/abs/effects-of-aloe-vera-
- 18. Gol, N. B., & Rao, T. V. (2011). Banana fruit ripening as influenced by edible coatings. International Journal of Fruit Science, 11(2), 119-135. https://doi.org/10.1080/15538362.2011.578512
- 19. Gonzales, L. M. R., & Benitez, M. M. (2019). Polysaccharide-Based Edible Coatings Improve Eggplant Quality in Postharvest Storage. Science and Humanities Journal. https://www.researchgate.net/profile/Leif-Marvin-Gonzales/publication/345702108
- 20. Guo, Y., Bai, J., Duan, X., & Wang, J. (2021). Accumulation characteristics of carotenoids and adaptive fruit color variation in ornamental pepper. Scientia Horticulturae, 275, 109699. https://doi.org/10.1016/j.scienta.2020.109699
- 21. Hajebi Seyed, R., Rastegar, S., and Faramarzi, S. (2021). Impact of edible coating derived from a combination of Aloe vera gel, chitosan and calcium chloride on maintain the quality of mango fruit at ambient

ISSN No. 2321-2705 | DOI: 10.51244/IJRSI | Volume XII Issue IX September 2025

- temperature. Journal of Food Measurement and Characterization, 15, 2932-2942. https://doi.org/10.1007/s11694-021-00861-6
- 22. Hasan, M. U., Riaz, R., Malik, A. U., Khan, A. S., Anwar, R., Rehman, R. N. U., and Ali, S. (2021). Potential of Aloe vera gel coating for storage life extension and quality conservation of fruits and vegetables: An overview. Journal of Food Biochemistry, 45(4), e13640. https://doi.org/10.1111/jfbc.13640
- 23. Herrera-Romero, I., Ruales, C., Caviedes, M., and Leon-Reyes, A. (2017). Postharvest evaluation of natural coatings and antifungal agents to control Botrytis cinerea in Rosa sp. Phytoparasitica, 45, 9-20. https://doi.org/10.1007/s12600-017-0565-2
- 24. Jodhani, K. A., and Nataraj, M. (2021). Synergistic effect of Aloe gel (Aloe vera L.) and Lemon (Citrus Limon L.) peel extract edible coating on shelf life and quality of banana (Musa spp.). Journal of Food Measurement and Characterization, 15, 2318-2328. https://doi.org/10.1007/s11694-021-00822-z
- 25. Kittur, F. S., Saroja, N., Habibunnisa, & Tharanathan, R. (2001). Polysaccharide-based composite coating formulations for shelf-life extension of fresh banana and mango. European food research and technology, 213, 306-311. https://doi.org/10.1007/s002170100363
- 26. Kumar, S., Thakur, K. S., & Jyoti, K. (2019). Evaluation of different edible coatings for quality retention and shelf life extension of bell pepper (Capsicum annuum L.). Plant Archives, 19(2), 1056-1062.
- 27. Kumara, R. A. G. D. A., Senarathna, S. M. A. C. U., Thikshani, S., & de Mel, P. K. J. (2019). Study of the effect of Aloe vera gel coating on weight loss of bell pepper (Capsicum annum L.) Stored under different temperature levels. http://repository.ou.ac.lk/bitstream/handle/94ousl/1612/paper%2052-58_Mel.pdf?sequence=1
- 28. Kundu, P., Adhikary, N. K., and Maji, S. (2020). A critical review on use of edible coating to enhance shelf life of mango. Current Journal of Applied Science and Technology, 39(27), 116-28. https://dlwqtxts1xzle7.cloudfront.net/95673547/58026-libre.pdf?1670900184=
- 29. Martínez-Romero, D., Castillo, S., Guillén, F., Díaz-Mula, H. M., Zapata, P. J., Valero, D., and Serrano, M. (2013). Aloe vera gel coating maintains quality and safety of ready-to-eat pomegranate arils. Postharvest Biology and Technology, 86, 107-112. https://doi.org/10.1016/j.postharvbio.2013.06.022
- 30. Maughan, R.G., (1984). Method to increase colour fastness of stabilized aloe vera. US Patent, 4: 465,629 https://patents.google.com/patent/US4465629A/en
- 31. Mohammadi, M., & Saidi, M. (2021). Effect of Aloe vera gel and Arabic gum coating on quality characteristics of green bell peppers (Capsicum annuum L.) during storage. Journal of Food Processing and Preservation, 12(2), 39-52. 10.22069/ejfpp.2021.16378.1536
- 32. Morillon, V., Debeaufort, F., Blond, G., Capelle, M., & Voilley, A. (2002). Factors affecting the moisture permeability of lipid-based edible films: a review. Critical reviews in food science and nutrition, 42(1), 67-89. https://doi.org/10.1080/10408690290825466
- 33. Nasrin, T.A.A., Rahman, M.N., Islam, M.N., Arfin, M.S. & Akter, L. (2018). Effect of edible coating on postharvest quality of bell pepper at ambient storage. Bulletin of the Institute of Tropical Agriculture, Kyushu University, 41, 73-83. https://doi.org/10.11189/bita.41.73
- 34. Navarro, D.; Díaz-Mula, H.M.; Guillén, F.; Zapata, P.J.; Castillo, S.; Serrano, M.; Valero, D.; Martínez-Romero, D. 2011. Reduction of nectarine decay caused by Rhizopus stolonifer, Botrytis cinerea and Penicillium digitatum with Aloe vera gel alone or with the addition of thymol. Int. J. Food Microbiol., 151, 241–246 https://doi.org/10.1016/j.ijfoodmicro.2011.09.009
- 35. Ni, Y., Turner, D., Yates, K. Á., & Tizard, I. (2004). Isolation and characterization of structural components of Aloe vera L. leaf pulp. International immunopharmacology, 4(14), 1745-1755. https://doi.org/10.1016/j.intimp.2004.07.006
- 36. Nicolau-Lapeña, I., Colàs-Medà, P., Alegre, I., Aguiló-Aguayo, I., Muranyi, P., & Viñas, I. (2021). Aloe vera gel: An update on its use as a functional edible coating to preserve fruits and vegetables. Progress in Organic Coatings, 151, 106007. https://doi.org/10.1016/j.porgcoat.2020.106007
- 37. Olaleye, M. T., and Bello-Michael, C. O. (2005). Comparative antimicrobial activities of Aloe vera gel and leaf. African journal of biotechnology, 4(12). https://www.ajol.info/index.php/ajb/article/view/71436
- 38. Perez-Gago, M. B., Rojas, C., & DelRio, M. A. (2002). Effect of lipid type and amount of edible hydroxypropyl methylcellulose-lipid composite coatings used to protect postharvest quality of mandarins cv. fortune. Journal of food science, 67(8), 2903-2910. https://doi.org/10.1111/j.1365-2621.2002.tb08836.x
- 39. PSA, (2022). Supply utilization accounts of selected agricultural practices. https://psa.gov.ph/sites/default/files/%28ons-cleared%29_SUA_2019

ISSN No. 2321-2705 | DOI: 10.51244/IJRSI | Volume XII Issue IX September 2025

- 40. PSA, (2023). 2017-2021 crop statistics of the Philippines. ISSN-2012-0487. https://www.scribd.com/document/651501013/Crops-Statistics-of-the-Philippines-2017-2021
- 41. Ramachandra, C. T., and Rao, P. S. (2008). Processing of Aloe vera leaf gel: a review. American Journal of Agricultural and Biological Sciences, 3(2), 502-510. http://allaboutaloe.org/resources/Processing%20of%20Aloe%20Vera%20Leaf%20Gel.pdf
- 42. Santoro, K.; Maghenzani, M.; Chiabrando, V.; Bosio, P.; Gullino, M.L.; Spadaro, D.; Giacalone, G. 2018, Thyme and savory essential oil vapor treatments control brown rot and improve the storage quality of peaches and nectarines, but could favor gray mold. Foods 7, 7. https://doi.org/10.3390/foods7010007
- 43. Serrano, M., Valverde, J. M., Guillén, F., Castillo, S., Martínez-Romero, D., and Valero, D. (2006). Use of Aloe vera gel coating preserves the functional properties of table grapes. Journal of agricultural and food chemistry, 54(11), 3882-3886. https://doi.org/10.1021/jf060168p
- 44. Seymour, G. B., Chapman, N. H., Chew, B. L., and Rose, J. K. (2013). Regulation of ripening and opportunities for control in tomato and other fruits. Plant Biotechnology Journal, 11(3), 269-278. https://doi.org/10.1111/j.1467-7652.2012.00738.x
- 45. Shabir, R., Riaz, A., Shah, S. M., and Sohail, A. (2021). 2. Aloe vera gel coating along with calcium chloride treatment enhance guava (Psidium guajava L.) fruit quality during storage. Pure and Applied Biology (PAB), 10(3), 549-565. http://dx.doi.org/10.19045/bspab.2021.100058
- 46. Suriati, L., & Utama, I. M. S. (2019, December). Characteristic fillet of aloe vera gel as edible coating. In Journal of Physics: Conference Series (Vol. 1402, No. 6, p. 066021). IOP Publishing. DOI 10.1088/1742-6596/1402/6/066021
- 47. Taa, N., Ma, R., & Akter, L. (2018). Effect of edible coating on postharvest quality of bell pepper at ambient storage. Bulletin of the Institute of Tropical Agriculture, Kyushu University, 41, 73-83. https://doi.org/10.11189/bita.41.73
- 48. Tzortzakis, N., Xylia, P., and Chrysargyris, A. (2019). Sage essential oil improves the effectiveness of Aloe vera gel on postharvest quality of tomato fruit. Agronomy, 9(10), 635. https://doi.org/10.3390/agronomy9100635
- 49. Yaman, Ö., & Bayoundırlı, L. (2002). Effects of an edible coating and cold storage on shelf-life and quality of cherries. LWT-Food science and Technology, 35(2), 146-150. https://doi.org/10.1006/fstl.2001.0827