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ABSTRACT 

Semiconductor manufacturing produces complex high-dimensional data datasets that contain mostly 

operational records and show product failure occurrences only in a limited portion. Several research studies 

use machine learning algorithms for predictive maintenance but very few address the issue of SECOM 

(imbalanced dataset) which contain up to 93% successful outcomes. This paper explains the existing research 

gap regarding imbalanced data of SECOM dataset and presents an integrated approach with innovative feature 

reduction and oversampling algorithms and model optimization methods. Our experiments involving the 

SECOM Semiconductor Manufacturing process dataset with an initial 591 features were reduced to 63 and 

processed by PCA which led to the Support Vector Classifier (SVC) producing the most accurate results at 

98.6% while maintaining robust calibration. The visualization includes both a correlation heatmap showing 

related features and pie charts showing class distribution before and after data balancing techniques are 

applied. This research presents implications for predictive maintenance within semiconductor fabs together 

with future work recommendations. 

Keyword- Predictive Maintenance, Semiconductor Manufacturing, SECOM Dataset, Imbalanced Data, 
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INTRODUCTION 

The predictive maintenance approach in semiconductor manufacturing proves essential for decreasing 

operational stoppages along with enhancing production output while maintaining high-quality automatic 

manufacturing. The main challenge in the SECOM dataset stems from the internal data imbalance since 

failures exist in only 6.64% of the cases while successful outcomes take up the remaining records. The training 

of reliable machine learning models faces complexity due to both the high imbalance of this dataset together 

with its unlabelled sensor data and maintaining high dimensions. Research has shown multiple machine 

learning techniques succeed in fault detection and maintenance scheduling but insufficient effort aims at 

correcting the calibration reissues and misclassification risks found in imbalanced datasets. The article 

provides an all-encompassing approach which optimizes data cleaning and feature reduction and oversampling 

and hyper parameters adaptation through specialized techniques for the SECOM semiconductor manufacturing 

dataset with its imbalanced characteristics.  

LITERATURE REVIEW 

In recent times machine learning prediction applications has attracted in a variety of industrial products. In the 

field of semiconductor manufacturing, early work by Susto et al. (2015) introduced multiple classifiers for 

managing high dimensional data within semiconductor manufacturing. This ground breaking study did not 
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explicitly address the challenges caused by imbalanced target classes distribution, common problem in real 

world fabrication environments. Other researchers have directed its investigations towards discovering sensor 

anomalies and developing physical models for equipment health predictions. Study by Gupta et al. (2022) 

demonstrate deep learning with ensemble methods achieve high accuracy performance in fault detection. 

These research works often neglect dataset imbalance or assume balanced data to make conclusions but they 

do not address the effect of oversampling on model calibration. Chawla et al.  (2002) and  He et al. (2008) [4] 

have explored oversampling methods for training data minority class enhancement through SMOTE. Although 

these methods are widely used in other domains, their integrated application in semiconductor manufacturing 

predictive maintenance is still underexplored. The research shows that oversampling works well to balance 

sample distributions yet results in incorrect probability estimation according to van den Goorbergh et al. 

(2022). The research on anomaly detection and inter-sensor transfer learning conducted by Yan et al. (2024) 

offers useful information regarding model performance in industrial settings while primarily examining 

anomaly detection features instead of complete predictive maintenance solutions. The work presented by 

Wang et al. (2022) together with Lee et al. (2014) showed how statistical filtering and principal component 

analysis (PCA) succeed in reducing manufacturing data dimensions while maintaining their vital variation. 

Research is lacking to determine how algorithms that reduce features work together with oversampling 

techniques to improve both model performance and calibration when used in semiconductor manufacturing 

operations. Furthermore, several studies have explored how machine learning model calibration performs 

following the implementation of oversampling techniques. Support vector machines operate well on 

imbalanced data records according to Farrag et al. (2024), yet probabilistic output calibration needs precise 

tuning. Studies by Chen et al (2016) examine ensemble techniques and the foundational work from Russell and 

Norvig (2016) about artificial intelligence but do not connect these approaches directly to preprocessing 

techniques for semiconductors. The research by Leksakul et al. (2025) evaluates the performance capabilities 

of ANN Artificial Neural Networks and SVR Support Vector Regression along with MLP Multi-Layer 

Perceptron and RFR Random Forest Regressor and ARIMA Autoregressive Integrated Moving Average using 

real manufacturing data from a semiconductor plant. Machine learning methods demonstrate their flexibility 

by reducing production interruptions and increasing operational efficiency according to the research findings. 

Farrag et al. (2024) conducted a study which introduces a predictive framework for minority classes within 

semiconductor manufacturing data that manages noise together with class imbalance concerns. The developed 

model exhibits positive results through its 0.95 AUC value and its 0.66 precision and 0.96 recall quality 

metrics which provide details about future maintenance operations and product quality levels. The study by El 

Mourabit et al. (2020) offers a machine learning predictive system for semiconductor failures which includes 

data preprocessing and feature selection to enhance prediction accuracy. Guo et al. (2024) examines different 

detection methods alongside classification methods and location methods in transmission lines and distribution 

systems while explaining machine learning applications for fault diagnosis. Salem (2018) investigates fault 

diagnosis systems in semiconductor production which face challenges due to misbalanced and partial data. The 

authors conduct a study of different machine learning approaches to enhance their ability to detect faults when 

working with these specific data types. Semiconductor manufacturing problems dealing with rare class 

predictions in highly imbalanced datasets receive attention through a model employing Particle Swarm 

Optimization and Deep Belief Networks from Kim et al. (2017). The study by Deb et al. (2020)  investigates 

the Chicken Swarm Optimization algorithm that enables the optimization of imbalanced dataset models in 

machine learning applications for semi-conductor production. Biau & Scornet (2016) delivers an extensive 

study of Random Forest algorithms to provide insights about their usage both for predictive maintenance and 

imbalanced data applications in semiconductor manufacturing. while previous work has provided valuable 

insights into individual components, oversampling, feature reduction, and machine learning algorithms, few 

studies have offered an end-to-end framework that simultaneously addresses the imbalance, dimensionality, 

and calibration challenges in semiconductor predictive maintenance. This research seeks to fill that gap by 
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combining robust preprocessing with advanced oversampling and model tuning, thereby achieving superior 

predictive performance and calibration. 

METHODOLOGY 

Data Overview and Preprocessing 

The SECOM (Semiconductor Manufacturing Process) dataset contains process control data from a semi-

conductor enterprise into a high-dimensional time-series format. The dataset contains 591 numeric features 

along with a timestamp field while its target variable represents failed products with label -1 and passed 

products with label 1. A strong class imbalance between failed products at 6.64% and other non-defective 

products presents major difficulties in supervised learning. The data required preparation through an effective 

machine learning preprocessing pipeline. The analysis began with feature correlation to exclude attributes 

whose connection with the target variable was weak. The study removed all features whose Pearson correlation 

coefficient was lower than 0.05 because researchers wanted to keep variables which demonstrated meaningful 

predictive aptitude. The elimination of weak relationships during this step fights against overfitting problems 

along with streamlining computational complexities in later modeling stages. Next, missing data treatment was 

conducted. Features with more than 20% missing values were eliminated, as excessive imputation could 

introduce noise and bias. For the remaining features with occasional missing entries, we performed mean 

imputation based on the missing at random (MAR) assumption. This step preserves data volume while 

ensuring statistical integrity. The reduced set of 63 features remained dimensionally high and potentially 

displayed multicollinearity. Next Principal Component Analysis (PCA) underwent implementation to achieve 

a new feature space transformation. PCA achieves two objectives: first it simplifies multidimensional data by 

maintaining most data variations and secondly it addresses multicollinearity issues that decrease model 

interpretability and performance. The analysis of principal components resulted in 32 features which 

maintained greater than 90% of all original data variations. The data transformations through this method 

create an informative reduced-dimensional representation that the classification models can utilize. The 

combination of statistical filtering and unsupervised dimensionality reduction provides a strong foundation for 

reliable and interpretable model development. 

Addressing Data Imbalance 

Class imbalance is a defining characteristic of many real-world industrial datasets, especially in fault detection 

and predictive maintenance contexts. The SECOM dataset contains a failure class that comprises only less than 

7% of the data which leads to standard classification models strongly favoring the pass class predictions. 

Standard classification models can perform well in terms of accuracy when they predict every instance to be 

non-faulty but they miss all real failures that reduces predictive maintenance effectiveness. For balancing the 

imbalanced data we used the common oversampling techniques SMOTE (Synthetic Minority Over-sampling 

Technique) and ADASYN (Adaptive Synthetic Sampling). The SMOTE approach creates synthetic samples 

through the connection points of minority class examples with their nearest neighbors on the data set 

dimension. The methodology considers synthetic data more beneficial than basic duplicate data production 

because standard duplication leads to overfitting. By applying ADASYN on SMOTE technology more 

emphasis is placed on the classification-intensive points near the decision border to improve training accuracy. 

The training process included class weighting as a means to decrease bias that results from class imbalance. 

The model implements a higher punishment for misclassifying minority examples which encourages it to 

create complex decision boundaries. Visual validation of the class distribution before and after oversampling is 

provided using pie charts (Figure 2 and Figure 3). Before oversampling, failure cases were heavily 

underrepresented. The dataset obtains balanced class distribution after applying SMOTE and ADASYN, which 

ensures more equitable training and leads to enhanced model generalization. 

Model Training and Evaluation 

Once the data was appropriately preprocessed and rebalanced, we conducted an extensive comparative analysis 

of several supervised learning algorithms. Which includes both traditional classification models and more 

advanced ensemble-based methods. Specifically, we trained and evaluated Logistic Regression, K-Nearest 
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Neighbors (KNN), Gaussian Naive Bayes, Decision Trees, Bagging Classifier, AdaBoost, Gradient Boosting, 

Random Forest, and Support Vector Classifier (SVC). We evaluated these models performance in regard to 

working with high-dimensional data streams and imbalanced distributions while performing predictive 

maintenance operations. Each model required optimization for its performance which was achieved through 

the use of Bayesian Optimization for hyperparameter tuning. Bayesian Optimization proved to be a superior 

choice compared to traditional grid search and random search methods because it excels in finding optimal 

solutions efficiently for complex search domains. Bayesian Optimization estimates probabilistic behavior of 

the objective function thus carefully determining which set of hyperparameters requires testing next. The 

method decreases evaluation requirements and increases the chances of identifying optimal or near-optimal 

configurations for each classifier. The dataset was divided into training and testing parts after oversampling 

ended by using 80% training data and reserving 20% for testing. The model evaluation relied on five metrics 

that included accuracy along with precision, recall and F1 score and Area Under the Receiver Operating 

Characteristic Curve (AUC). The accuracy rating presents how well the system correctly predicts situations but 

precision focuses on determining correct failure predictions. The model's ability to detect actual failures 

appears as Recall since it reflects its sensitivity performance. When dealing with imbalanced classes the F1 

score computes precision and recall through harmonic mean evaluation to provide balanced results. AUC 

delivers performance evaluation through discrimination analysis of model behavior at different threshold 

points to identify superior classification ability. Based on the performance metrics summarized in Table 1, the 

Support Vector Classifier (SVC) is the most effective as the top-performing model. It achieved an accuracy of 

98.6%, along with  high precision, recall, and an AUC score of 0.99. This exceptional performance is primarily 

attributed to the SVC kernel-based learning mechanism, which enables it to find complex nonlinear patterns 

within high dimensional data spaces at its best level when combined with PCA for dimension reduction. In 

comparison, simpler models like Logistic Regression and Gaussian Naive Bayes exhibited relatively lower 

performance, underscoring the necessity of employing sophisticated classifiers that are capable of modeling 

intricate patterns in high dimensional, imbalanced datasets typically encountered in semiconductor 

manufacturing processes. 

Visualization of Insights 

 

Figure 1: Heatmap visualize the correlation between the features 

https://rsisinternational.org/journals/ijrsi
https://rsisinternational.org/journals/ijrsi
http://www.rsisinternational.org/


INTERNATIONAL JOURNAL OF RESEARCH AND SCIENTIFIC INNOVATION (IJRSI) 

ISSN No. 2321-2705 | DOI: 10.51244/IJRSI |Volume XII Issue X October 2025 

www.rsisinternational.org Page 174 

 

  

    

 

The heatmap (Figure 1) visualization depicts the interrelations of selected features. A solid positive linear 

relationship exists between attributes '180' and '316' and a profound negative relationship appears between 

'122' and '130' while '59', '103', '210', '348' strongly affect the target variable. The visual presentation ident ifies 

certain attributes that provide the strongest predictive power for determining system failures.  

 

Figure 2: Pie charts shows the target class distribution before oversampling 

 

Figure 3: Pie charts shows the target class distribution after oversampling 

The distribution of target classes appears in (Figure 2) via a pie chart before implementing oversampling 

methods. This visualization demonstrates the extreme class imbalance, where only 6.64% of the records 

represent failed products, emphasizing the need for data balancing techniques to improve model performance 

and predictive reliability. 

The target class distribution displays the results of oversampling in (Figure 3). The balanced dataset 

distribution appears in the pie chart to show how the previous uneven data was balanced for equal 

representation between pass and fail target classes. The implementation of balancing processes provides 

machine learning models with adequate representation from both classes improving their accuracy and 

robustness. 
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RESULTS 

Our experimental evaluation confirms that the using of feature reduction and oversampling techniques proved 

effective for dealing with imbalanced data while decreasing runtime complexity in experimental testing. 

Support Vector Classifier (SVC) demonstrates the best performance among tested all classifiers since it 

achieves 98.6% accuracy as well as the best performance for precision, recall and AUC scores according to 

Table 1. Several features possess high relationship to the target variable according to the heatmap during our 

analysis and the pie chart data shows class distributions transform significantly due to oversampling. 

Table 1. Performance Metrics of Various Models 

Model Accuracy Precision Recall F1 Score AUC 

Logistic Regression 75.9% 76.1% 75.9% 75.9% 0.82 

K-Nearest Neighbors 82.4% 87.1% 82.4% 81.9% 0.88 

Gaussian Naïve Bayes 76.6% 76.6% 76.6% 76.6% 0.80 

Decision Tree 82.6% 82.7% 82.6% 82.6% 0.85 

Bagging Classifier 97.3% 97.4% 97.3% 97.3% 0.98 

AdaBoost Classifier 81.9% 81.9% 81.9% 81.9% 0.86 

Gradient Boosting Classifier 93.7% 94.0% 93.7% 93.7% 0.97 

Random Forest Classifier 96.6% 96.7% 96.6% 96.6% 0.97 

SVC 98.6% 98.6% 98.6% 98.6% 0.99 

DISCUSSION 

This study addresses a critical gap in the reviewed studies by providing an end-to-end framework that 

integrates oversampling, feature reduction, and model tuning tailored to the imbalanced nature of 

semiconductor manufacturing data. The preprocessing workflow which begins with feature selection then 

processes missing data points and applies Principal Component Analysis maintains only the beneficial 

information from the dataset. The effective balancing of the dataset requires the use of oversampling methods 

SMOTE and ADASYN because target distribution changes can be seen in the produced pie charts. 

Furthermore, the heatmap for feature correlations reveals that attributes, such as '180' and '316', have a strong 

positive correlation, while others, such as '122' and '130', show a negative relationship. These insights suggest 

that the data contains inherent patterns that, when properly exploited, lead to significant improvements in 

predictive performance. Our experiments indicate that the SVC, which leverages kernel based learning, is 

particularly optimal choice for this task, outperforming other classifiers by achieving an accuracy of 98.6% 

along with excellent precision and recall. The implementation of robust data preprocessing methods with 

advance oversampling and hyperparameter tuning thus provides a promising framework for reliable predictive 

maintenance in semiconductor fabs. 

CONCLUSION 

In this article, we have developed a framework for semiconductor manufacturing predictive maintenance 

which addresses problems caused by unbalanced data distribution. Our method establishes significant model 

performance improvement thorough data cleaning procedures with advanced feature reduction techniques and 

optimal oversampling methods and precise model parameter optimization. The experimental demonstrate that 

Support Vector Classifier (SVC) outperforms to all other models as it achieves an accuracy of 98.6% with 

robust performance metrics. The visualizations include both a feature correlation heatmap and target class 

distribution pie charts which provide critical insights into the underlying data structure and the impact of 

oversampling. Future work will explore further improvements in model interpretability enhancement and real-

time sensor implementation tasks for maintenance scheduling dynamic industrial operational settings. 
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