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ABSTRACT 

Artificial intelligence (AI) is transforming pharmacology, drug safety, and toxicology by accelerating the drug 

development process to be more efficient, precise, and economical. Conventional drug discovery, pre-clinical 

testing, and post-marketing surveillance methods frequently encounter high costs, long lead times, ethical 

constraints, and low predictive validity in human outcomes. Utilizing machine learning (ML) and deep learning 

(DL), AI combines heterogenous datasets chemical structures, genomics, clinical data, and imaging to bridge 

these gaps.In drug design and discovery, AI has hastened predictions of protein and RNA structures (e.g., 

AlphaFold), enhanced virtual screening, and enabled de novo drug design with generative models. It has also 

hastened peptide-based drug development and improved pharmacokinetic prediction of absorption, distribution, 

metabolism, excretion, and toxicity (ADMET) and reduced failure rates. 

Key boards: Artificial intelligence, Pharmacology, Drug discovery, Compound Pharmacokinetic Prediction, 

Clinical Pharmacology, Toxicity, Pharmacovigilence, Machine Learning,  Deep Learning,  Adverse Drug 

Reactions.  

INTRODUCTION    

To achieve tremendous success in both theory and practice, advances in computing power, machine learning, 

and deep learning have been evolving rapidly[1]. Artificial Intelligence is describe as the use of intelligence to 

solve problems.  Pharmacology was first studied in the mid-1900s. Even though techniques like neural networks 

were then suggested for use in QSAR models[2]. Numerous AI techniques have been applied in research 

pharmacology, including compound pharmacokinetic prediction, AI-assisted drug discovery, and design which 

are among the most popular fields.[3] 

Medicine safety and toxicology are vital for guaranteeing pharmaceutical products'  efficacity and safety. In vivo 

beast testing is generally used for  drug safety assessments and toxicological  exploration;  still, it can be time- 

consuming,  expensive, and immorally problematic. likewise, these approaches generally fail to precisely  predict  

mortal responses, raising safety  enterprises in clinical trials and post-marketing surveillance.[4] 

 

Figure 1 The realationship between artificial intrlligence, machine learning, and deep learning and the 

applications of artificial intelligence in pharmacology research. 

https://rsisinternational.org/journals/ijrsi
https://rsisinternational.org/journals/ijrsi
https://doi.org/10.51244/IJRSI.2025.1210000051


INTERNATIONAL JOURNAL OF RESEARCH AND SCIENTIFIC INNOVATION (IJRSI) 

ISSN No. 2321-2705 | DOI: 10.51244/IJRSI |Volume XII Issue X October 2025 

  
 

 

Page 582 www.rsisinternational.org  

 

The latest diagnostic tools, modern devices, accurate data collection techniques, and technologies such as X-ray 

and abdominal examinations outperform older models[5]. Artificial Intelligence has also expanded its medical 

services to include animal studies, such as veterinary medicine, focusing on disease prevention and targeted 

therapies[6].  

Drug safety and toxicology involve the thorough investigation of the safety profiles of pharmaceutical products 

and their potential harmful effects[7]. It includes assessing the risks linked to drug use, identifying adverse 

reactions, and understanding the mechanisms of toxicity involved. The primary aim of medication safety and 

toxicology is to protect patients by minimizing harm while maximizing the therapeutic benefits[8]. Traditionally, 

evaluating drug safety and conducting toxicological studies have heavily depended on in vivo research using 

animal models to assess the potential risks of medications[9]. These animal models were utilized to anticipate 

drug effectiveness, pharmacokinetics, and toxicology. 

2.AI-assisted drug discovery and design: 

Recently, the development and use of AI have faciliated research related to drug discovery and design, as 

evidenced in three major aspects[10]: 1.Using AI to anticipate protein and RNA strucutures; 2. AI-assisted drug 

discovery; and 3. AI-based drug design[11]. 

2.1  Using AI to predict the structure of proteins and RNA 

Understanding the 3D structure of proteins and related compounds is essential for medication discovery and 

design[12]. Physical and chemical experiments can accurately  determine the 3D structure of proteins and RNA, 

but they are time-consuming and costly. Recent research uses computational algorithms to estimate the 3D 

structure of molecules[13]. Classical 3D structure prediction methods consist of de novo modeling, fragment 

assembly, and homology modeling, the mechanism of which are based on rule-based computing and splicing but 

not using AI for 3D structure prediction[14]. Thus, before AlphaFold was innovated, the application of AI in 

structure prediction focused more on the prediction of features related to primary and second structures rather 

than very complicated 3D structures. 

2.2AI- assissted drug discovery 

The GAN technique has been used in medicinal chemistry for molecular de novo design, biochemical research 

for de novo peptide and protein design, and dimensionality reduction for single-cell data in preclinical 

development[15]. AI models require two types of data: input X, which can be a fixed-length vector (e.g., molecular 

descriptors, fingerprints), a sequence (e.g., SMILES strings, biomacromolecule structures), or a molecular 

structure graph, and output Y, which can be real-valued numbers, binary values, integer values, fixed-size 

vectors, sequential data, and single or multiple data columns[16]. Several database libraries, such as DisGeNET, 

CTD, LinkedOmics, Open-Target, DepMap, HMDD, STRING, and the Therapeutic Target Database (TTD), 

have helped manage heterogeneous omics data for biomolecule target identification[26]. 

2.3 AI in peptide-based drug discovery 

ACPS based on ML and DL offer benefits such as excellent selectively and minimal toxicity under normal 

conditions. During the COVID-19 pandemic, a peptide library was developed to battle the SARS-Cov-19 

virus[17]. Four peptides were identified as effective, with high binding affinity for protease enzymes using AI. 

Researches used AI algorithms to study the role of dietary peptides in immunomodulation[18]. They discovered 

that this bioactive peptide has a high affinity for inflammatory receptors and suppresses pro-inflammatory 

cytokines like TNF-α and nitrogen oxides[19]. 

Structure based virtual screening: 

To identify drug-target interactions in virtual screening (VS), advanced machine learning techniques have been 

used to construct predictive models by confirming physicochemical features of compound structures and target 

receptors[20]. There are two types of virtual screening (VS): structure-based (SBVS) and ligand-based (LBVS). 
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Ligand based virtual screening: 

Ligand based virtual screening is the prefered method when the target compunds’s 3D structure is unavailable. 

The idea suggests that similar structure lead to similar biological consequences[21]. The AI method has been 

effectively implemented in QSAR-based LBVS. QSAR-based LBVS uses AI algorithms such as ANN, RF, 

SVM, which are similar to the SBVS approaches listed above[22]. The most commonly used nonlinear modeling 

paradigm in QSAR is ANN, which mimics the human nervous system’s process with many neuron layers. 

Figure 2: Illustration for pre-screening DNN model. 

 

A study optimized ANN architectures and analyzed six methods (partial derivative-PaD, pairwise partial 

derivative, weights, perturbation, profile methods, and sum of ranking differences) to determine the correlation 

between quantum mechanical molecular descriptions and output (Trolox-equivalent antioxidant capacity of 33 

flavonoids)[23]. 

2.4 Using AI for drug design 

De novo drug et al., 2021 design involves creating novel molecules that fit specific constraints using generative 

algorithms[24]. This technique allows for more precise drug design in a larger chemical space, potentially leading 

to better disease treatment. The objective is to create a stable and simple new molecule without a starting 

template. Mouchlis  provide a comprehensive overview of traditional de novo drug design methods, including 

structure-based, ligand-based, sampling-based, and evolutionary algorithm-based approaches[25]. 

This review  discusses many methods for ensuring synthetic feasibility, including synthesis planning, prediction, 

fragment-driven molecular construction, and generative models. While AI has significant potential for de novo 

drug creation, research is still in its early stages. More research is needed to fully understand algorithmic 

exploration and practical applications[26]. 

3 Artificial intelligence for compound pharmacokinetics prediction 

In drug development scenarios such as drug design and dosage exploration, the pharmacokinetic studies of 

potential compounds, which examine properties like absorption, distribution, metabolism, excretion, and toxicity 

(ADMET), are crucial. This is because it is necessary to assess any drug candidate's ADMET characteristics to 

ensure the drug's effectiveness and safety[27]. Consequently, by utilizing AI technology to create predictive 

models for pharmacokinetics, we can significantly narrow the chemical search space, enhance the likelihood of 

successful drug development, and reduce overall costs . Moreover, these models can help validate ADMET 

properties for drug candidates in the early stages of development and eliminate undesired drugs[28]. When 

predicting ADMET and physicochemical properties, each step corresponds to several significant features, 

including, but not limited to, those listed in Table 3. 
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Table 1 Important features for ADMET and Physicochemical properties.  

Important features 

Absorption Human intestinal absorption (HIA), Humanoral bioavailability (HOB,F%), P-

Glycoprotein inhibitor/substrate, Caco-2/MDCK 

Distribution Plasma protein binding (PPB), fraction unbound in plasma (Fu), blood-brain 

barrier (BBB),Volume pf distribution (Vd) 

Metabolism Cytochrome P450 isoforms inhibitor/substrate 

Excretion Clearence (cl), Half-life 

Toxicity Acute toxicity, Carcinogenecity, and Ames test 

Physicochemical properties Lipophilicity (log P), Aqueous solubility (log S), Acid dissociation constant 

(Pka) 

4 Artificial intelligence for clinical pharmacology 

4.1 AI in clinical trails: 

Clinical trials are an important stage in the development of medications. Failure in clinical trials can be costly 

and time-consuming. AI can increase clinical trial efficiency and success rates. Recruiting appropriate 

participants is a tough phase in clinical trial design. To ensure patient eligibility for clinical trials, we use machine 

learning algorithms to screen and match patients to inclusion criteria based on various data points. AI can detect 

and pick patients who are likely to progress and attain their endpoints faster. Lee suggest reducing the duration 

of medication studies. AI can identify dropouts during trials and boost completion rates by reminding 

experimenters to focus on these subjects[29]. 

4.2 AI in optimizing drug treatment: 

Individualizing treatment plans is crucial for many marketed medications. Therapeutic drug monitoring (TDM), 

is used to tailor doses for medicines with limited therapeutic windows. Statistical prediction models are 

commonly used to extrapolate TDM data and determine appropriate treatment options. AI applications in this 

field  are less established than in drug discovery due to the necessity for substantial clinical datasets for model 

training, which are not easily available[30]. 

5 The challenge of keeping drugs safe: 

Drug safety is a significant barrier to bringing novel medications to market. Toxicities are a primary cause of 

attrition in clinical trails, and post-marketing safety concerns lead to avoidable morbidity and mortality[31]. 

Adverse events (AEs) or adverse drug reactions (ADRs) are unanticipated consequences caused by a regular 

drug dose that can be proven to be responsible. From 2008 to 2017, the FDA authorized 321 new medications. 

Over the same period, the FDA Adverse Event Reporting System (FADERS) documented over 10 million AE 

reports, with 5.8 million being serious and 1.1 million resulting in death. Annually, Aes cause 2 million hospital 

stays and extend visits by 1.7 to 4.6 days, putting a strain on the healthcare system. There are two complementary 

systems for addressing medication safety. Clinical studies assess the safety and efficacy of a medicine before it 

is approved for use[33]. Pharmacovigilance (PV) involves monitoring a drug's safety information through adverse 

event reports (AEs) after it is marketed. Clinical trials have structural limitations that make them prone to 

errors[34]. It is impossible to test for all potential synergistic effects or conduct trials on large populations to detect 

unusual adverse events. Previously, women and the elderly were regarded as unique subgroups in clinical trials. 

6 Pre-clinical drug safety: 
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AI can significantly improve pre-market medication safety, particularly in toxicity evaluations. Medication 

toxicity evaluation is a crucial phase in medication design, determining the adverse effects of compounds on 

humans, plants, animals, and the environment. Pre-clinical examinations are necessary to avoid harmful 

medications from entering clinical trials. High toxicity remains a significant cause of medication failure, 

accounting for two-thirds of post-market withdrawals and one-fifth of clinical trial failures. Accurate toxicity 

estimations ensure drug safety and save research costs and time to market. Traditionally, animal studies have 

been the primary method for assessing toxicity. However, this research is limited by budget, time, and ethical 

constraints[35]. 

6.1 Post marketing survelliance: 

Post marketing survelliance AI can significantly improve pre-market medication safety, particularly in toxicity 

evaluations. Medication toxicity evaluation is a crucial phase in medication design, determining the adverse 

effects of compounds on humans, plants, animals, and the environment. Re clinical examinations are necessary 

to avoid harmful medications from entering clinical trails. High toxicity remains a significant cause of 

medication failure, accounting for two-thirds of post-market withdrawls and one-fifth of clinical trail of 

failures[36]. Accurate toxicity estimations ensure drug safety and save reasearch costs and time to market. 

Traditionally, animal studies have been the primary method for assessing toxicity. 

7 Endpoint-specific toxicity prediction: 

Endpoints differ in data qualities, sources, and volumes. This includes databases. The level of interpretability 

needed for specific toxicity pathways varies. Models for each endpoint are tailored to their specific properties, 

resulting in varying features and methods . Although molecular data serve as the foundation for many of these 

models, the characteristics and strategies used vary depending on the endpoint and aims[37]. 

7.1 Hepatotoxicity: 

The liver plays a crucial role in maintaining systemic homeostasis by detoxifying, synthesizing plasma proteins, 

regulating lipid and glucose metabolism, producing bile, and modulating immunity. The liver's metabolic 

activities can both reduce and increase the toxicity of substances, potentially harming the liver[38]. Liver 

pathologies like steatosis and fibrosis can disrupt nutritional, endocrine, and pharmacological metabolism, 

affecting overall physiological balance. 

7.2 Cardiotoxicity prediction: 

Cardiotoxicity is a significant issue in medication development, resulting in late-stage failures or market 

withdrawals[39]. Compounds with cardiovascular hazards have been withdrawn, and others are under regulatory 

scrutiny, highlighting the necessity for early risk assessment procedures. Janus kinase (JAK) inhibitors, including 

tofacitinib, baricitinib, and upadacitinib, are used to treat rheumatoid arthritis. In 2021, the FDA issued a boxed 

warning for these agents, citing increased risks of cardiovascular events, cancer, thrombosis, and mortality. 

7.3 Neurotoxicity prediction: 

Neurotoxicity signifies the harmful effects on both the central and peripheral nervous systems, leading to 

dysfunction and structural impairment[40]. The mechanisms underlying neurotoxicity can generally be classified 

into neuronopathy, axonopathy, myelinopathy, and toxicity related to neurotransmission. Even medications used 

for treatment can exhibit neurotoxic properties; for example, vincristine, an alkaloid derived from plants used in 

chemotherapy, is recognized for causing peripheral neuropathy, which is characterized by sensations of 

numbness, tingling, and weakness in movement. Due to these risks, it is crucial to assess neurotoxicity during 

the development of new drugs to ensure the safety of novel chemical entities. 

CONCLUSION: 

Artificial intelligence (AI) is transforming pharmacology, drug discovery, safety, and toxicology by overcoming 

the drawbacks of convential methodologies such as high expense, long lead time, and poor predictability[41]. By 

https://rsisinternational.org/journals/ijrsi
https://rsisinternational.org/journals/ijrsi


INTERNATIONAL JOURNAL OF RESEARCH AND SCIENTIFIC INNOVATION (IJRSI) 

ISSN No. 2321-2705 | DOI: 10.51244/IJRSI |Volume XII Issue X October 2025 

  
 

 

Page 586 www.rsisinternational.org  

 

means of sophisticated machine learning (ML) and deep learning (DL) methodologies, AI streamlines protein 

and RNA structure prediction, improves virtual screening, and facilitates de novo drug design, thus expanding 

the therapeutic development scope. Tools powered by AI also maximize pharmacokinetics (ADMET) prediction, 

enable patient-specific treatment regimens, and enhance clinical trail design through increased recruitment, 

monitoring, and compliance[42]. 
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