7. Davy, P., Darcel, C., Le Goc, R., & Mas Ivars, D. (2018). Elastic properties of fractured rock masses
with frictional properties and power law fracture size distributions. Journal of Geophysical Research:
Solid Earth, 123(8), 6521-6539. https://doi.org/10.1029/2017JB015329
8. Diab, A. I., Sanuade, O., & Radwan, A. E. (2023). An integrated source rock potential, sequence
stratigraphy, and petroleum geology of (Agbada-Akata) sediment succession, Niger delta: application
of well logs aided by 3D seismic and basin modeling. Journal of Petroleum Exploration and Production
Technology, 13(1), 237-257.
9. Endo, T. (2023). Analysis of Conventional Feature Learning Algorithms and Advanced Deep Learning
Models. Journal of Robotics Spectrum, 1, 001-012.
10. Erickson, B. J., & Kitamura, F. (2021). Magician’s corner: 9. Performance metrics for machine
learning models. Radiology: Artificial Intelligence, 3(3), e200126.
https://doi.org/10.1148/ryai.2021200126
11. Guo, Q., He, Z., & Wang, Z. (2023). Prediction of monthly average and extreme atmospheric
temperatures in Zhengzhou based on artificial neural network and deep learning models. Frontiers in
Forests and Global Change, 6, 1249300.
12. Heidarzadeh, S., Saeidi, A., Lavoie, C., & Rouleau, A. (2021). Geomechanical characterization of a
heterogenous rock mass using geological and laboratory test results: a case study of the Niobec Mine,
Quebec (Canada). SN Applied Sciences, 3, 1-20.
13. Isah, A., Arif, M., Hassan, A., Mahmoud, M., & Iglauer, S. (2022). Fluid–rock interactions and its
implications on EOR: Critical analysis, experimental techniques and knowledge gaps. Energy
Reports, 8, 6355-6395.
14. Kadhim, Z. S., Abdullah, H. S., & Ghathwan, K. I. (2022). Artificial Neural Network Hyperparameters
Optimization: A Survey. Int. J. Online Biomed. Eng., 18(15), 59-87.
15. Kalantari, S., Baghbanan, A., & Hashemalhosseini, H. (2019). An analytical model for estimating rock
strength parameters from small-scale drilling data. Journal of Rock Mechanics and Geotechnical
Engineering, 11(1), 135-145.
16. Kufel, J., Bargieł-Łączek, K., Kocot, S., Koźlik, M., Bartnikowska, W., Janik, M., & Gruszczyńska, K.
(2023). What is machine learning, artificial neural networks and deep learning?—Examples of practical
applications in medicine. Diagnostics, 13(15), 2582.
17. Li, H., & Yang, M. (2024). Study on unconfined compressive strength and deformation characteristics
of chlorine saline soil. Scientific Reports, 14(1), 1478.
18. Li, S., Hu, J., Amann, F., Li, L., Liu, H., Shi, S., & Hamdi, P. (2022). A multifunctional rock testing
system for rock failure analysis under different stress states: Development and application. Journal of
Rock Mechanics and Geotechnical Engineering, 14(5), 1531-1544.
https://doi.org/10.1016/j.jrmge.2021.12.017
19. Li, Z., Li, H., & Meng, L. (2023). Model compression for deep neural networks: A
survey. Computers, 12(3), 60. https://doi.org/10.3390/computers12030060
20. Lin, P., Wei, P., Wang, C., Kang, S., & Wang, X. (2021). Effect of rock mechanical properties on
electromagnetic radiation mechanism of rock fracturing. Journal of Rock Mechanics and Geotechnical
Engineering, 13(4), 798-810.
21. Liu, H., & Abbeel, P. (2020). Hybrid discriminative-generative training via contrastive learning. arXiv
preprint arXiv:2007.09070. https://doi.org/10.48550/arXiv.2007.09070
22. Liu, H., Ren, Y. L., Li, X., Hu, Y. X., Wu, J. P., Li, B., & Fang, W. K. (2022). Rock thin-section
analysis and identification based on artificial intelligent technique. Petroleum Science, 19(4), 1605-
1621.
23. Livieris, I. E. (2018). Improving the classification efficiency of an ANN utilizing a new training
methodology. In Informatics (Vol. 6, No. 1, p. 1). MDPI. https://doi.org/10.3390/informatics6010001
24. Lutz, M. P., & Zimmerman, R. W. (2021). The effect of pore shape on the Poisson ratio of porous
materials. Mathematics and Mechanics of Solids, 26(8), 1191-1203.
25. Madhiarasan, M., & Louzazni, M. (2022). Analysis of artificial neural network: architecture, types, and
forecasting applications. Journal of Electrical and Computer Engineering, 2022(1), 5416722.
https://doi.org/10.1155/2022/5416722
26. Mahdi, D. S., & Alrazzaq, A. A. (2023). Rock mechanical properties: A review of experimental tests
and prediction approaches. Iraqi Journal of Oil and Gas Research (IJOGR), 3(1), 106-115.