68. Marx, M., & Fuegi, A. (2023). Reliance on science. Zenodo. https://doi.org/10.5281/zenodo.7903131
69. Masternak, M. M. (2023). Senescent cells as new pharmacological targets for age-related diseases and
anti-aging therapy. Journal of Medical Sciences. https://doi.org/10.20883/medical.e907
70. Maxwell, I., & Maxwell, N. J. L. (2022). A quantitative metric for research impact using patent citation
analytics. World Patent Information. https://doi.org/10.1016/j.wpi.2022.102126
71. Melo Alves, P. L., Nieri, V., de Campos Moreli, F., Constantino, E., de Souza, J., Oshima‐Franco, Y.,
& Grotto, D. (2024). Unveiling new horizons: Advancing technologies in cosmeceuticals for anti-aging
solutions. Molecules. https://doi.org/10.3390/molecules29204890
72. Moawad, M. H. E. D., Serag, I., Alkhawaldeh, M., Abbas, A., Sharaf, A., Alsalah, S., ... & Meshref, M.
(2024). Exploring the mechanisms and therapeutic approaches of mitochondrial dysfunction in
Alzheimer’s disease: An educational literature review. Molecular Neurobiology.
https://doi.org/10.1007/s12035-024-04468-y
73. Mohd Tohit, F., & Haque, M. (2024). The new frontier of ageing: Innovations and insights in
gerontology. Advances in Human Biology. https://doi.org/10.4103/aihb.aihb_110_24
74. Morley, P., & Puhvel, M. (1984). Two authors reply. English Studies in Canada.
https://doi.org/10.1353/ESC.1984.0040
75. Mureti, M. M., Wang, B. M., Sun, Z.-G., Xu, K., & Aikeremu, D. (2024). Current research on
epigenetic age and cellular senescence: A bibliometric and visual analysis. bioRxiv.
https://doi.org/10.1101/2024.02.13.580124
76. Nekrasov, S. A., & Mironov, V. N. (2019). Patent activity as an indicator determining the vector of
development of the world economy. https://doi.org/10.33293/1609-1442-2019-2(85)-115-130
77. Ore, A., James, M., Angelastro, C., & Giulivi, C. (2024). Integrating mitochondrial biology into
innovative cell therapies for neurodegenerative diseases. Brain Sciences.
https://doi.org/10.3390/brainsci14090899
78. Oshimura, M., Tabata, T., Uno, N., Takata, S., Hichiwa, G., Kanazawa, I., ... & Kazuki, Y. (2024).
Rejuvenation of human mesenchymal stem cells using a nonintegrative and conditionally removable
Sendai virus vector. Dental Science Reports. https://doi.org/10.1038/s41598-024-74757-y
79. Pasupuleti, M. K. (2024). The future of life: Bioprinting and biotechnological advances for age
reversal. National Engineering Sciences Exchange. https://doi.org/10.62311/nesx/7288
80. Poursistany, H., Tabibi Azar, S., Tabibi Azar, M., & Raeisi, S. (2023). The current and emerging
Klotho-enhancement strategies. Biochemical and Biophysical Research Communications.
https://doi.org/10.1016/j.bbrc.2023.149357
81. Powers, T. L., & Leal, R. P. (1994). Is the U.S. innovative? A cross-national study of patent activity.
Management International Review.
82. Prud’homme, G. J., & Wang, Q. (2024). Anti-inflammatory role of the Klotho protein and relevance to
aging. Cells. https://doi.org/10.3390/cells13171413
83. Read, C. Y., Green, R. C., & Smyer, M. A. (2008). Aging, biotechnology, and the future.
84. Rout, S. K. (2018). A brief review on intellectual property rights with special attention on patent.
https://doi.org/10.21839/JAAR.2018.V3I3.147
85. Sahu, S., Lu, J., Shao, Y., Wang, C., Tsuji, M., Nuñez Delicado, E., ... & Belmonte, J. C. I. (2024).
Targeted partial reprogramming of age-associated cell states improves markers of health in mouse
models of aging. Science Translational Medicine. https://doi.org/10.1126/scitranslmed.adg1777
86. Schulz, R., Wahl, H.-W., Matthews, J. T., Dabbs, A. D., Beach, S. R., & Czaja, S. J. (2015). Advancing
the aging and technology agenda in gerontology. Gerontologist.
https://doi.org/10.1093/GERONT/GNU071
87. Shaik, F. (2024). Advancements in regenerative medicine: Present approaches, emerging strategies, and
future perspectives. International Journal of Advanced Research. https://doi.org/10.21474/ijar01/19638
88. Sharma, V., Nunkoo, A., Jurcău, A. C., Diaconu, R. G., Jurcău, M. C., & Lunardelli, M. L. (2024). The
quest for eternal youth: Hallmarks of aging and rejuvenating therapeutic strategies. Advances in
Cardiovascular Diseases. https://doi.org/10.3390/biomedicines12112540
89. Shiraishi, M., Sasaki, D., Hibino, M., Takeda, A., Harashima, H., & Yamada, Y. (2024). Human
cardiosphere-derived cells with activated mitochondria for better myocardial regenerative therapy.
Journal of Controlled Release. https://doi.org/10.1016/j.jconrel.2024.01.058
90. Sinclair, D. A. (2023). Discovery of chemical means to reverse aging and restore cellular function.