7. Esteva, A., Kuprel, B., Novoa, R. A., Ko, J., Swetter, S. M., Blau, H. M., & Thrun, S. (2017).
Dermatologist-level classification of skin cancer with deep neural networks. Nature, 542(7639), 115-
118.
8. Esteva, A., Robicquet, A., Ramsundar, B., Kuleshov, V., DePristo, M., Chou, K., ... & Dean, J. (2019).
A guide to deep learning in healthcare. Nature Medicine, 25(1), 24-29.
9. Food and Drug Administration (FDA). (2021). Artificial intelligence and machine learning (AI/ML)
software as a medical device. U.S. Department of Health and Human Services.
10. Gebru, T., Morgenstern, J., Vecchione, B., Vaughan, J. W., Wallach, H., Dauméé III, H., & Crawford,
K. (2021). Datasheets for datasets. Communications of the ACM, 64(12), 86-92.
11. General Data Protection Regulation (GDPR). (2016). Regulation (EU) 2016/679 of the European
Parliament and of the Council. Official Journal of the European Union, L119, 1-88.
12. Ghassemi, M., Oakden-Rayner, L., & Beam, A. L. (2021). The false hope of current approaches to
explainable artificial intelligence in health care. The Lancet Digital Health, 3(11), e745-e750.
13. Gulshan, V., Peng, L., Coram, M., Stumpe, M. C., Wu, D., Narayanaswamy, A., ... & Webster, D. R.
(2016). Development and validation of a deep learning algorithm for detection of diabetic retinopathy
in retinal fundus photographs. JAMA, 316(22), 2402-2410.
14. He, J., Baxter, S. L., Xu, J., Xu, J., Zhou, X., & Zhang, K. (2019). The practical implementation of
artificial intelligence technologies in medicine. Nature Medicine, 25(1), 30-36.
15. Jiménez-Luna, J., Grisoni, F., & Schneider, G. (2020). Drug discovery with explainable artificial
intelligence. *Nature Machine Intelligence, 2(10), 573-584.
16. Jiang, F., Jiang, Y., Zhi, H., Dong, Y., Li, H., Ma, S., ... & Wang, Y. (2017). Artificial intelligence in
healthcare: Past, present and future. Stroke and Vascular Neurology, 2(4), 230-243.
17. Kaissis, G. A., Makowski, M. R., Rückert, D., & Braren, R. F. (2020). Secure, privacy-preserving and
federated machine learning in medical imaging. Nature Machine Intelligence, 2(6), 305-311.
18. Kelly, C. J., Karthikesalingam, A., Suleyman, M., Corrado, G., & King, D. (2019). Key challenges for
delivering clinical impact with artificial intelligence. BMC Medicine, 17(1), 195.
19. Kononenko, I. (2001). Machine learning for medical diagnosis: History, state of the art and perspective.
Artificial Intelligence in Medicine, 23(1), 89-109.
20. The Lancet Global Health. (2020). Artificial intelligence for global health. The Lancet Global Health,
8(7), e875.
21. Lekadir, K., Feragen, A., Fofanah, A. J., Frangi, A. F., Buyx, A., Emelie, A., ... & Sanz, J. (2022).
FUTURE-AI: Guiding principles and consensus recommendations for trustworthy artificial intelligence
in medical imaging. arXiv preprint arXiv:2209.02435.
22. Litjens, G., Kooi, T., Bejnordi, B. E., Setio, A. A. A., Ciompi, F., Ghafoorian, M., ... & Sánchez, C. I.
(2017). A survey on deep learning in medical image analysis. Medical Image Analysis, 42, 60-88.
23. McKinney, S. M., Sieniek, M., Godbole, V., Godwin, J., Antropova, N., Ashrafian, H., ... & Shetty, S.
(2020). International evaluation of an AI system for breast cancer screening. Nature, 577(7788), 89-94.
24. Mitchell, M., Wu, S., Zaldivar, A., Barnes, P., Vasserman, L., Hutchinson, B., ... & Gebru, T. (2019).
Model cards for model reporting. In Proceedings of the Conference on Fairness, Accountability, and
Transparency (pp. 220-229).
25. Obermeyer, Z., Powers, B., Vogeli, C., & Mullainathan, S. (2019). Dissecting racial bias in an
algorithm used to manage the health of populations. Science, 366(6464), 447-453.
26. Panch, T., Mattie, H., & Celi, L. A. (2019). The “inconvenient truth” about AI in healthcare. NPJ
Digital Medicine, 2*(1), 77.
27. Price, W. N., & Cohen, I. G. (2019). Privacy in the age of medical big data. Nature Medicine, 25(1),
37-43.
28. Rajkomar, A., Dean, J., & Kohane, I. (2019). Machine learning in medicine. New England Journal of
Medicine, 380(14), 1347-1358.
29. Rajkomar, A., Oren, E., Chen, K., Dai, A. M., Hajaj, N., Hardt, M., ... & Sundberg, P. (2018). Scalable
and accurate deep learning with electronic health records. NPJ Digital Medicine, 1*(1), 18.
30. Rajpurkar, P., Irvin, J., Zhu, K., Yang, B., Mehta, H., Duan, T., ... & Lungren, M. P. (2017). CheXNet:
Radiologist-level pneumonia detection on chest X-rays with deep learning. *arXiv preprint
arXiv:1711.05225.