REFERENCES
1. Susto, G. A., Schirru, A., Pampuri, S., McLoone, S., & Beghi, A. (2014). Machine learning for
predictive maintenance: A multiple classifier approach. IEEE transactions on industrial
informatics, 11(3), 812-820.
2. Thomas, J., Patidar, P., Vedi, K. V., & Gupta, S. (2022). An analysis of predictive maintenance
strategies in supply chain management. Int J Sci Res Arch, 6(01), 308-17.
3. Chawla, N. V., Bowyer, K. W., Hall, L. O., & Kegelmeyer, W. P. (2002). SMOTE: synthetic minority
over-sampling technique. Journal of artificial intelligence research, 16, 321-357.
4. He, H., Bai, Y., Garcia, E. A., & Li, S. (2008, June). ADASYN: Adaptive synthetic sampling approach
for imbalanced learning. In 2008 IEEE international joint conference on neural networks (IEEE world
congress on computational intelligence) (pp. 1322-1328). Ieee.
5. Van den Goorbergh, R., van Smeden, M., Timmerman, D., & Van Calster, B. (2022). The harm of class
imbalance corrections for risk prediction models: illustration and simulation using logistic
regression. Journal of the American Medical Informatics Association, 29(9), 1525-1534.
6. Yan, P., Abdulkadir, A., Luley, P. P., Rosenthal, M., Schatte, G. A., Grewe, B. F., & Stadelmann, T.
(2024). A comprehensive survey of deep transfer learning for anomaly detection in industrial time
series: Methods, applications, and directions. IEEE Access, 12, 3768-3789.
7. Wang, S., & Chen, Y. (2024, July). Improved yield prediction and failure analysis in semiconductor
manufacturing with xgboost and shapley additive explanations models. In 2024 IEEE International
Symposium on the Physical and Failure Analysis of Integrated Circuits (IPFA) (pp. 01-08). IEEE.
8. Lee, J., Wu, F., Zhao, W., Ghaffari, M., Liao, L., & Siegel, D. (2014). Prognostics and health
management design for rotary machinery systems—Reviews, methodology and
applications. Mechanical systems and signal processing, 42(1-2), 314-334.
9. Farrag, A., Ghali, M. K., & Jin, Y. (2024). Rare Class Prediction Model for Smart Industry in
Semiconductor Manufacturing. arXiv preprint arXiv:2406.04533.
10. Chen, K., Huang, C., & He, J. (2016). Fault detection, classification and location for transmission lines
and distribution systems: a review on the methods. High voltage, 1(1), 25-33.
11. Norvig, P. R., & Intelligence, S. A. (2002). A modern approach. Prentice Hall Upper Saddle River, NJ,
USA: Rani, M., Nayak, R., & Vyas, OP (2015). An ontology-based adaptive personalized e-learning
system, assisted by software agents on cloud storage. Knowledge-Based Systems, 90, 33-48.
12. Leksakul, K., Suedumrong, C., Kuensaen, C., & Sinthavalai, R. Predictive Maintenance in
Semiconductor Manufacturing: Comparative Analysis of Machine Learning Models for Downtime
Reduction.
13. El Mourabit, Y., El Habouz, Y., Zougagh, H., & Wadiai, Y. (2020). Predictive system of semiconductor
failures based on machine learning approach. International journal of advanced computer science and
applications (IJACSA), 11(12), 199-203.
14. Guo, P., & Chen, Y. (2024, July). Enhanced yield prediction in semiconductor manufacturing:
Innovative strategies for imbalanced sample management and root cause analysis. In 2024 IEEE
International Symposium on the Physical and Failure Analysis of Integrated Circuits (IPFA) (pp. 1-6).
IEEE.
15. Salem, M., Taheri, S., & Yuan, J. S. (2018). An experimental evaluation of fault diagnosis from
imbalanced and incomplete data for smart semiconductor manufacturing. Big Data and Cognitive
Computing, 2(4), 30.
16. Kim, J. K., Han, Y. S., & Lee, J. S. (2017). Particle swarm optimization–deep belief network–based rare
class prediction model for highly class imbalance problem. Concurrency and Computation: Practice and
Experience, 29(11), e4128.
17. Deb, S., Gao, X. Z., Tammi, K., Kalita, K., & Mahanta, P. (2020). Recent studies on chicken swarm
optimization algorithm: a review (2014–2018). Artificial Intelligence Review, 53(3), 1737-1765.
18. Biau, G., & Scornet, E. (2016). A random forest guided tour. Test, 25(2), 197-227.