8. Creswell, J. W., & Creswell, J. D. (2018). Research design: Qualitative, quantitative, and mixed
methods approaches. (5th ed.). Sage Publications.
9. Edwards, R. D., Magee, J., & Bassetti, W. C. (2018). Technical analysis of stock trends. CRC press.
10. Fischer, T., & Krauss, C. (2018). Deep learning with long short-term memory networks for financial
market predictions. European Journal of Operational Research, 270(2), 654-669.
11. Gârleanu, N., & Pedersen, L. H. (2013). Dynamic trading with predictable returns and transaction
costs. The Journal of Finance, 68(6), 2309-2340.
12. Ghouse, S. H. N. M., Ahmad, N., & Salamudin, N. (2018). Contrarian Strategies in Developing
Asian Countries: Dogs of the Dow Theory (DoD) versus Puppies of the Dow Theory (PoD).
International Journal of Academic Research in Business and Social Sciences, 8(12), 2003–2012.
13. Gunawan, T. I. (2024). Understanding investment decision-making: A qualitative inquiry into high-
frequency trading, investment strategies, and portfolio performance in the financial market. Golden
Ratio of Finance Management, 4(2), 131-141.
14. Hamid, K., Suleman, M. T., Ali Shah, S. Z., Akash, I., & Shahid, R. (2017). Testing the weak form of
efficient market hypothesis: Empirical evidence from Asia-Pacific markets. Available at SSRN
2912908.
15. Hilber, N., Reichmann, O., Schwab, C., & Winter, C. (2013). Computational methods for quantitative
finance:
16. Finite element methods for derivative pricing. Springer Science & Business Media.
17. Jogani, A. (2024). The basics of technical analysis. Available at SSRN 4870943.
18. Khuntia, S., & Pattanayak, J. K. (2018). Adaptive market hypothesis and evolving predictability of
bitcoin. Economics Letters, 167, 26-28.
19. Lee, M. C., Chang, J. W., Hung, J. C., & Chen, B. L. (2021). Exploring the effectiveness of deep
neural networks with technical analysis applied to stock market prediction. Computer Science and
Information Systems, 18(2), 401-418.
20. Lo, A. W. (2004). The adaptive markets hypothesis. The Journal of Portfolio Management, 30(5), 15-
29.
21. Malkiel, B. G. (2003). The efficient market hypothesis and its critics. Journal of economic
perspectives, 17(1), 59-82.
22. Marwala, T., & Hurwitz, E. (2017). Efficient Market Hypothesis. In Artificial Intelligence and
Economic Theory: Skynet in the Market (pp. 101-110). Springer, Cham.
23. Murphy, J. J. (2009). The visual investor: how to spot market trends (Vol. 443). John Wiley & Sons.
24. Nardi, P. M. (2018). Doing survey research: A guide to quantitative methods. Routledge.
25. Nazário, R. T. F., e Silva, J. L., Sobreiro, V. A., & Kimura, H. (2017). A literature review of technical
analysis on stock markets. The Quarterly Review of Economics and Finance, 66, 115-126.
26. Omar, M. H. A. E. R., Hammad, J. A. E. D. S., El-Behairy, O. H., El-Tohami, S. A., & Mohamed, T.
I. (2025). Behavioral dynamics and market adaptation: Cross-country empirical evidence of the
adaptive market hypothesis. Academic Journal of Social Sciences, 1(2), 18-65.
27. Pathak, A., & Shetty, N. P. (2019). Indian Stock Market Prediction Using Machine Learning and
Sentiment Analysis. In Computational Intelligence in Data Mining (pp. 595-603). Springer,
Singapore.
28. Prabakaran, V., & Krishnaveni, P. (2016). DOW Theory in Assessing Equity Share Price Movement.
Asian Journal of Research in Social Sciences and Humanities, 6(10), 1326-1336.
29. Precious, E. O., & Marwa, N. (2023, June). Comparative analysis of moving average and bollinger
bands as an investment strategy in a select Crypto Asset. In ICABR Conference (pp. 53-70). Cham:
Springer Nature Switzerland.
30. Stylios, C. D., & Kreinovich, V. (2018). Dow Theory’s Peak-and-Trough Analysis Justified. In
Constraint Programming and Decision Making: Theory and Applications (pp. 123-128). Springer,
Cham.
31. Timmermann, A., & Granger, C. W. (2004). Efficient market hypothesis and forecasting.
International Journal of forecasting, 20(1), 15-27.
Page 2961