REFERENCES
1. Agrawal, R., Imielinski, T., & Swami, A. (1993). Mining association rules between sets of items in
large databases. ACM SIGMOD Record, 22(2), 207–216.
2. Bishop, C. M. (2006). Pattern recognition and machine learning. Springer.
3. Breiman, L., Friedman, J. H., Olshen, R. A., & Stone, C. J. (1984). Classification and regression
trees. CRC Press.
4. Centers for Disease Control and Prevention. (2022). Hepatitis: Overview and statistics. Retrieved
from https://www.cdc.gov/hepatitis
5. Dua, D., & Graff, C. (2019). UCI machine learning repository. University of California, Irvine.
Retrieved from https://archive.ics.uci.edu
6. Džeroski, S. (2003). Multi-relational data mining: An introduction. ACM SIGKDD Explorations
Newsletter, 5(1), 1–16.
7. Han, J., Kamber, M., & Pei, J. (2011). Data mining: Concepts and techniques (3rd ed.). Morgan
Kaufmann.
8. Han, J., Kamber, M., & Pei, J. (2012). Data mining: Concepts and techniques. Elsevier.
9. Habrard, A., Bernard, M., &Jacquenet, F. (2003, October). Multi-relational data mining in medical
databases. In Conference on Artificial Intelligence in Medicine in Europe (pp. 365–374). Springer
Berlin Heidelberg.
10. Haykin, S. (1999). Neural networks: A comprehensive foundation (2nd ed.). Prentice Hall.
11. Kaczmarek, B. L. J., &Knobbe, A. J. (2006). Multi-relational data mining (Vol. 145). IOS Press.
12. Kanodia, J. (2005). Structural advances for pattern discovery in multi-relational databases.
13. Kantardzic, M. (2019). Data mining: Concepts, models, methods, and algorithms. Wiley.
14. Knobbe, A., Blockeel, H., &Siebes, A. (1999). Multi-relational decision tree induction. In
Proceedings of the Third European Symposium on Principles of Data Mining and Knowledge
Discovery (pp. 1–12).
15. Morariu, D., Crețulescu, R., &Breazu, M. (2017). The WEKA multilayer perceptron classifier.
International Journal of Advanced Statistics and IT&C for Economics and Life Sciences, 7(1), 1–7.
16. Murtagh, F. (1991). Multilayer perceptrons for classification and regression. Neurocomputing, 2(5–
6), 183–197.
17. Padhy, N., &Panigrahi, R. (2012). Multi-relational data mining approaches: A data mining
technique. arXiv preprint arXiv:1211.3871.
18. Pal, S. K., & Mitra, S. (1992). Multilayer perceptron, fuzzy sets, and classification. IEEE
Transactions on Neural Networks, 3(5), 683–697.
19. Quinlan, J. R. (1986). Introduction to decision trees. Machine Learning, 1(1), 81–106.
20. Quinlan, J. R. (1993). C4.5: Programs for machine learning. Morgan Kaufmann.
21. Singhal, S., & Jena, M. (2013). A study on WEKA tool for data preprocessing, classification and
clustering. International Journal of Innovative Technology and Exploring Engineering (IJITEE),
2(6), 250–253.
22. Tan, P. N., Steinbach, M., & Kumar, V. (2019). Introduction to data mining (2nd ed.). Pearson.
23. UCI Machine Learning Repository. (n.d.). Hepatitis dataset. University of California, Irvine.
Retrieved from https://archive.ics.uci.edu
24. World Health Organization. (2023). Hepatitis. Retrieved from https://www.who.int/health-
topics/hepatitis
25. Zhang, S., Li, X., & Yang, J. (2019). Multi-relational data mining and neural network integration for
efficient knowledge discovery. International Journal of Data Mining and Knowledge Management
Process, 9(2), 15–27.