11. de Rancourt-Raymond, A., & Smaili, N. (2023). The unethical use of deepfakes. Journal of Financial
Crime, 30(4), 1066-1077.
12. Chicco, D., & Jurman, G. (2023). The Matthews correlation coefficient (MCC) should replace the
ROC AUC as the standard metric for assessing binary classification. BioData Mining, 16(1), 4.
13. Viola, M., & Voto, C. (2023). Designed to abuse? Deepfakes and the non-consensual diffusion of
intimate images. Synthese, 201(1), 30.
14. Batagelj, B., Kronovšek, A., Štruc, V., & Peer, P. (2025). Robust cross-dataset deepfake detection
with multitask self-supervised learning. ICT Express.
15. Kosarkar, U., Sarkarkar, G., & Gedam, S. (2023). Revealing and classification of deepfakes video's
images using a customize convolution neural network model. Procedia Computer Science, 218,
2636-2652.
16. Almestekawy, A., Zayed, H. H., & Taha, A. (2024). Deepfake detection: Enhancing performance
with spatiotemporal texture and deep learning feature fusion. Egyptian Informatics Journal, 27,
100535.
17. Jafar, M. T., Ababneh, M., Al-Zoube, M., & Elhassan, A. (2020). Forensics and analysis of deepfake
videos. In 2020 11th international conference on information and communication systems (ICICS)
053058.
18. Koritala, S. P., Chimata, M., Polavarapu, S. N., Vangapandu, B. S., Gogineni, T. K., & Manikandan,
V. M. (2024, June). A Deepfake detection technique using Recurrent Neural Network and
EfficientNet. In 2024 15th International Conference on Computing Communication and Networking
Technologies (ICCCNT) (pp. 1-6). IEEE.
19. Suratkar, S., & Kazi, F. (2023). Deep fake video detection using transfer learning approach. Arabian
Journal for Science and Engineering, 48(8), 9727-9737.
20. Petmezas, G., Vanian, V., Konstantoudakis, K., Almaloglou, E. E., & Zarpalas, D. (2025). Video
deepfake detection using a hybrid CNN-LSTM-Transformer model for identity verification.
Multimedia Tools and Applications, 1-20.
21. Sharma, P., Kumar, M., & Sharma, H. K. (2024). GAN-CNN ensemble: a robust deepfake detection
model of social media images using minimised catastrophic forgetting and generative replay
technique. Procedia Computer Science, 235, 948-960.
22. Li, Y., Yang, X., Sun, P., Qi, H., & Lyu, S. (2020). Celeb-df: A large-scale challenging dataset for
deepfake forensics. In Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition (pp. 3207-3216).
23. Vamsi, V. V. V. N. S., Shet, S. S., Reddy, S. S. M., Rose, S. S., Shetty, S. R., Sathvika, S., ... &
Shankar, S. P. (2022). Deepfake detection in digital media forensics. Global Transitions Proceedings,
3(1), 74-79.
24. Deng, J., Guo, J., Ververas, E., Kotsia, I., & Zafeiriou, S. (2020). Retinaface: Single-shot multi-level
face localisation in the wild. In Proceedings of the IEEE/CVF conference on computer vision and
pattern recognition (pp. 5203-5212).
25. Dong, F., Zou, X., Wang, J., & Liu, X. (2023). Contrastive learning-based general Deepfake
detection with multi-scale RGB frequency clues. Journal of King Saud UniversityComputer and
Information Sciences, 35(4), 90-99.
26. Sohail, S., Sajjad, S. M., Zafar, A., Iqbal, Z., Muhammad, Z., & Kazim, M. (2025). Deepfake Image
Forensics for Privacy Protection and Authenticity Using Deep Learning. Information, 16(4), 270.
27. Cuellar, M. (2024). The Neglected Error: False Negatives and the Case for Validating Eliminations.
arXiv preprint arXiv:2412.05398.
Page 3286