2. Addo, P. M., Fall, B., & Gueyie, J.-P. (2018). Exchange rate pass-through to domestic prices in Ghana:
Evidence from structural VAR analysis. Ghana Economic Policy Review , 9(1), 45–62.
3. Akram, Q. F. (2009). Commodity prices, interest rates and the dollar. Economic Modelling , 26(1), 215–
225. https://doi.org/10.1016/j.econmod.2008.07.004
4. Adu, G., & Marbuah, G. (2011). Oil price shocks and exchange rate dynamics in Ghana. International
Journal of Energy Economics and Policy , 1(2), 28–37.
5. Aguilera, R. F., & Radetzki, M. (2013). The six major enduring drivers of oil prices. The Energy Journal
, 34(2), 1–27. https://doi.org/10.5547/01956574.34.2.1
6. Ajayi, V. A. (1990). Traditional Yoruba agriculture and its implications for modern agricultural planning.
Africa Development , 15(2), 113–130.
7. Almeida, H., & Waldman, M. (2019). The use of artificial intelligence in economics: Applications and
predictions. American Economic Association Papers and Proceedings , 109, 505–510.
https://doi.org/10.1257/pandp.20191065
8. Appiah-Kubi, K. (1973). Oral tradition and historical reconstruction in West Africa. History in Africa ,
1, 5–20. https://doi.org/10.2307/3171576
9. Apter, A. (1991). Herskovits’ heritage: Myth as method in African history . Indiana University Press.
10. Atsalakis, G. S., & Valavanis, K. P. (2009). Surveying stock market forecasting techniques Part I:
Traditional methods. Emerging Markets Journal , 1(1), 56–75. https://doi.org/10.5195/emj.2009.36
11. Baffes, J., Oomes, N., & Ohnesorge, F. (2015). The great plunge in oil prices: Causes, consequences,
and policy responses. IMF Staff Discussion Note , SDN/15/01.
https://doi.org/10.5089/9781484302265.006
12. Bekiros, S., & Marques, C. (2012). On the predictability of crude oil prices: Machine learning versus
traditional models. Empirical Economics , 43(1), 255–273. https://doi.org/10.1007/s00181-011-0497-z
13. Berkes, F., Colding, J., & Folke, C. (2000). Rediscovery of traditional ecological knowledge as adaptive
management. Ecological Applications , 10(5), 1251–1262. https://doi.org/10.1890/1051-0761
(2000)010[1251:ROTEKA]2.0.CO;2
14. Boachie, M. K., & Tuffour, S. (2017). The impact of fuel price changes on inflation in Ghana. MPRA
Paper No. 82178 .
15. Buetzer, S., Lardic, S., & Mignon, V. (2012). Forecasting the US real house price index using machine
learning algorithms. Economics Bulletin , 32(4), 3031–3042.
16. Chen, K., Zhou, Y., & Dai, F. (2015). A LSTM-based method for stock returns prediction: A case study
of the China stock market. Proceedings of the IEEE International Conference on Big Data , 2823–2824.
https://doi.org/10.1109/BigData.2015.7364055
17. Cologni, A., & Manera, M. (2009). Oil prices, inflation and interest rates in GCC countries: Empirical
evidence from panel data. Energy Policy , 37(3), 858–870. https://doi.org/10.1016/j.enpol.2008.10.044
18. Dornbusch, R. (1976). Expectations and exchange rate dynamics. Journal of Political Economy , 84(6),
1161–1176. https://doi.org/10.1086/260503
19. Frankel, J. A. (1981). Flexible exchange rates, prices, and the role of “news”: Lessons from the 1970s.
Journal of Political Economy , 89(4), 665–705. https://doi.org/10.1086/261002
20. Frankel, J. A., & Rose, A. K. (1996). Currency crashes in emerging markets: An empirical treatment.
Journal of International Economics , 41(3–4), 351–366. https://doi.org/10.1016/S0022-1996 (96)01445-
6
21. Gadgil, M., Berkes, F., & Folke, C. (1993). Indigenous knowledge for biodiversity conservation. Ambio
, 22(2–3), 151–156.
22. Grier, K. B., & Perry, M. J. (2000). The effects of real and nominal uncertainty on inflation and output
growth: Some ARCH-M evidence. Journal of Macroeconomics , 22(1), 47–67.
https://doi.org/10.1016/S0164-0704 (00)00127-8
23. Henrich, J., Boyd, R., Bowles, S., Camerer, C., Fehr, E., Gintis, H., & McElreath, R. (2001). In search
of homo economicus: Behavioral experiments in 15 small-scale societies. American Economic Review ,
91(2), 73–78. https://doi.org/10.1257/aer.91.2.73
24. Idowu, K. E. (2003). Olódùmarè: God in Yoruba belief and the seeing of Aikú . University of Ibadan
Press.
25. Jiang, Z., & Liang, H. (2019). Stock trend prediction based on sentiment analysis and LSTM neural
network. Procedia Computer Science , 154, 527–532. https://doi.org/10.1016/j.procs.2019.06.074