undetermined coefficients. To demonstrate the effectiveness of the proposed methods, three real-world model
problems from the literature were solved. The numerical results show that the proposed methods produce
highly accurate solutions with smaller errors when compared to existing techniques. Furthermore, the results
indicate that the optimized selection of off-step points yields superior performance compared to non-optimized
approaches, confirming the efficiency and robustness of the developed methods.
REFERENCES
1. Asifa, T., Sania, Q., Amanullah , S., Evren , H., & Asif, A. (2022). A new continuous hybrid block
method with one optimal intra step point through interpolation and collocation Fixed Point . Theory
Algorithms Sci Eng , 22.
2. Ajie, I. J., Durojaye, M.O, Utalor, I. K., & Onumanyi, P. A. (2020). Construction of a family of stable
one- Block methods Using Linear Multi- Step Quadruple. Journal of Mathjematics., e-ISSN: 2278-
5728
3. Ajie, I. J., Utalor, I. K., & Onumanyi, P. A. (2019). A family of high order one-block methods for the
solution of stiff initial value problems. Journal of Advances in Mathjematics and Computer Science.,
31(6), 1–14.
4. Anake , T. A., Awoyemi, D. O., & Adesanya , A. O. (2012). One-step implicit hybrid block method
for the direct solution of general second order ordinary differential equations,. Int. J. App. Math. ,
42(4), 224–228.
5. Allouche, H.; Tazdayte, A. (2017). Numerical solution of singular boundary value problems with
logarithmic singularities by Padè approximation and collocation methods. J. Comput. Appl. Math. ,
311(324–341.).
6. Aydinlik, S.; Kiris, A. (2018). A high-order numerical method for solving nonlinear Lane-Emden-type
equations arising in astrophysics. Astrophys. Space Sci., 363, 264.
7. Brugnano, L., Trigiante, D. (1998). Solving Differential Problems by Multistep Initial and Boundary
Value Methods. Amsterdam: Gordon and Breach Science Publishers.
8. Caglar, H.; Caglar, N.; Ozer, M. (2009). B-spline solution of non-linear singular boundary value
problems arising in physiology. Chaos Solitons Fract., 39(1232–1237.).
9. Duggan R & Goodman A. (2017). Pointwise bounds for a nonlinear heat conduction model of the
human head. Bulletin of Mathematical Biology,Springer Science and Business Media LLC, 48(2),
229-236. DOI:10.1016/s0092-8240(86)80009-x
10. Gumgum, S. (2020). Taylor wavelet solution of linear and non-linear Lane-Emden equations. Appl.
Numer. Math,158, 44–53.
11. Jator, S.N.: On a class of hybrid methods for y = f (x,y,y ). Int. J. Pure Appl. Math. 59(4), 381– 395
(2010)
12. Kadalbajoo, M.K.; Kumar, V. (2007). B-Spline method for a class of singular two-point boundary
value problems using optimal grid. Appl. Maths. Comput. , 188(1856–1869.).
13. Kumar, M. A . (2003). difference scheme based on non-uniform mesh for singular two-point boundary
value problems. Appl. Math. Comput. , 136(281–288.).
14. Lambert J. D.(1973), Computational methods in Ordinary Differential Equations, John Wiley and
sons, New York.
15. Malele, J.; Dlamini, P.; Simelane, S. (2023). Solving Lane–Emden equations with boundary
conditions of various types using high-order compact finite differences. Appl. Math. Sci. Eng. , 31,
2214303.
16. Pandey, R.K. (1997). A finite difference methods for a class of singular two point boundary value
problems arising in physiology. Int. J. Comput. Math., 65(131–140.).
17. Ramos, Z. Kalogiratou, Th. Monovasilis and T. E. Simos, An optimized two-step hybrid block method
for solving general second order initial-value problems, Numerical Algorithm, Springer 2015. DOI
10.1007/s11075-015- 0081-8.
18. Olabode , B. T., Kayode , S. J., Odeniyan-Fakuade , F. H., & Momoh , A. L. (2024). Numerical
Solution to Singular Boundary Value Problems (SBVPS) using Modified Linear Multistep Formulas
(LMF). International Journal of Mathematical Sciences and Optimization: Theory and Applications,