

TV White Spaces as a Viable Alternative for Internet Access in Rural Communities of Benue State, Nigeria

Okebe Ajima

Department of Technical Education, College of Education, Oju, Benue State, Nigeria

DOI: https://doi.org/10.51244/IJRSI.2025.1210000044

Received: 25 September 2025; Accepted: 02 October 2025; Published: 01 November 2025

ABSTRACT

Rural communities in Benue State, Nigeria, face persistent barriers to internet access due to the high cost of cellular data—the main connectivity option in these areas. This study evaluates the economic feasibility of Television White Space (TVWS) technology as a cost-effective alternative for individuals and organizations in rural Benue State. Using a comparative cost analysis that combines primary survey data from 247 respondents across six Local Government Areas with international TVWS deployment benchmarks, the study reveals significant cost advantages of TVWS over cellular networks. Current cellular data costs average N8,450 monthly for individuals and N90,000—N265,000 for organizations, while TVWS-based services could deliver comparable access at 60–85% lower costs. The findings suggest that TVWS presents a viable option for reducing connectivity expenses and bridging the digital divide in rural Nigeria. However, successful implementation requires addressing regulatory gaps, infrastructure needs, equipment affordability, and digital literacy challenges. The study recommends phased pilot deployments, equipment subsidy programs, digital literacy initiatives, and the development of a supportive regulatory framework to facilitate TVWS adoption for affordable rural broadband access.

Keywords: TV White Space, rural internet access, cellular data costs, digital divide, Nigeria, broadband affordability

INTRODUCTION

Internet access costs remain a significant barrier to digital inclusion across rural Nigeria. Despite increasing mobile phone penetration, the high cost of cellular data services creates a persistent digital divide that particularly affects rural communities in states like Benue. While urban areas benefit from competitive telecommunications markets and fiber infrastructure, rural populations depend primarily on expensive cellular data plans for internet access.

Television White Space (TVWS) technology presents an alternative paradigm that could fundamentally alter the economics of rural internet access. By utilizing unused television broadcast spectrum, TVWS enables the deployment of cost-effective broadband networks that can serve rural communities at a fraction of the cost of traditional cellular services.

In Benue State, where 70% of the population lives in rural areas, current internet access relies heavily on cellular networks with limited coverage and high data costs. A typical rural household seeking 30GB monthly data access pays №25,000-35,000 through cellular services, representing 15-20% of average household income. Organizations such as schools and health facilities often face even higher costs, with monthly internet bills of №100,000-250,000 for adequate connectivity.

This cost structure creates a fundamental barrier to digital participation. Students cannot access online educational resources, healthcare workers lack telemedicine capabilities, farmers miss market information systems, and small businesses operate without digital commerce tools. The economic burden of internet access perpetuates rural-urban development disparities.

ISSN No. 2321-2705 | DOI: 10.51244/IJRSI | Volume XII Issue X October 2025

TVWS technology offers a potential solution by enabling internet service provision at dramatically lower costs while providing superior coverage characteristics compared to cellular networks. This paper examines the cost comparison between current cellular internet access and potential TVWS-based alternatives, demonstrating why TVWS represents a viable path toward affordable rural broadband access in Benue State.

LITERATURE REVIEW

TVWS Technology and Global Deployment Experience

Television White Spaces utilize unused spectrum in the VHF and UHF television bands to provide broadband internet access. Quantitative analysis shows 75.1% of VHF and UHF channels available for secondary usage in Nigeria (Gbenga-Ilori & Sanusi, 2019). This abundant spectrum resource, combined with favorable propagation characteristics, creates opportunities for cost-effective rural broadband deployment.

International TVWS deployments demonstrate substantial cost advantages over traditional technologies. Kenya's commercial TVWS networks serve rural communities at monthly service costs 40-60% lower than cellular alternatives (Communications Authority of Kenya, 2022). South African TVWS deployments in KwaZulu-Natal provide unlimited broadband access at costs equivalent to 10-15GB of cellular data.

The technology's superior propagation characteristics enable single base stations to cover areas requiring multiple cellular towers. TVWS signals in the 470-790 MHz range travel 2-3 times further than cellular frequencies while providing better penetration through buildings and vegetation. This coverage advantage directly translates to infrastructure cost savings and enables economical service provision in low-density rural areas.

Nigerian Telecommunications Market and Pricing Structure

Nigeria's telecommunications market demonstrates significant rural-urban disparities in both coverage and pricing. Rural areas often receive only 2G/3G cellular coverage with limited data services and higher per-MB costs due to infrastructure constraints and lower user density.

Current cellular data pricing in Nigeria reflects these challenges. Major operators (MTN, Airtel, Glo, 9mobile) offer data plans ranging from ₹500 for 500MB to ₹20,000 for 120GB monthly allocations. However, effective costs often exceed advertised rates due to network congestion, coverage limitations, and data plan restrictions that reduce actual usable capacity.

For rural users, cellular internet access faces additional cost factors including premium pricing for rural coverage areas, higher device and equipment costs, reduced data plan options compared to urban markets, network quality issues requiring redundant connectivity, and limited competition leading to price rigidity.

Cost Barriers to Digital Inclusion

Research by the Alliance for Affordable Internet indicates that internet affordability requires monthly costs below 2% of household income for meaningful adoption (Alliance for Affordable Internet, 2020). In rural Benue State, where average household income ranges №150,000-250,000 monthly, affordable internet access should cost №3,000-5,000 monthly.

Current cellular pricing structures place internet access well above this threshold for most rural households. The resulting digital exclusion perpetuates economic development gaps and limits participation in increasingly digital economic opportunities.

Organizations face even more severe cost barriers. Rural schools requiring internet for e-learning initiatives often allocate 30-50% of their ICT budgets to connectivity costs, reducing resources available for devices, training, and content development. Health facilities seeking telemedicine capabilities face similar trade-offs between connectivity costs and other essential services.

a

ISSN No. 2321-2705 | DOI: 10.51244/IJRSI | Volume XII Issue X October 2025

Current Cost Reality: Cellular Internet Access in Benue State

Individual User Costs

The cellular data market in Nigeria operates through tiered pricing structures that vary significantly by operator and usage level. Analysis of current pricing reveals that individual users face substantial monthly expenses that often exceed their financial capacity, particularly in rural areas where disposable income remains limited.

For light users consuming 5-10GB monthly, costs range from \aleph 6,000 to \aleph 12,000 across major operators. MTN typically charges \aleph 8,000-12,000 for this usage tier, while Airtel offers slightly lower rates at \aleph 7,500-11,500. Glo provides the most competitive pricing at \aleph 6,000-9,500, with 9mobile falling between at \aleph 7,000-10,000. The average monthly cost for light usage therefore ranges \aleph 7,125-10,750.

Moderate users requiring 20-30GB monthly face significantly higher costs, with MTN charging ₹18,000-25,000, Airtel at ₹16,000-23,000, Glo at ₹14,000-20,000, and 9mobile at ₹15,000-22,000. This translates to average monthly costs of ₹15,750-22,500, representing 10-15% of typical rural household income.

Heavy users consuming 50-100GB monthly encounter the steepest pricing, with MTN costs reaching №35,000-50,000, Airtel at №32,000-45,000, Glo at №28,000-40,000, and 9mobile at №30,000-42,000. Average monthly costs of №31,250-44,250 for this usage tier represent 20-30% of typical rural household income, effectively placing comprehensive internet access beyond most families' financial reach.

These substantial costs create additional challenges for rural users, including reduced effective data allocation due to network congestion, higher per-GB costs due to limited plan options in rural markets, the necessity of maintaining multiple operator subscriptions to ensure coverage, and additional expenses for compatible devices and equipment that can further increase total ownership costs.

Organizational Internet Costs

Educational, healthcare, and business organizations in rural Benue State encounter even more severe cost pressures due to their higher bandwidth requirements and need for consistent, reliable connectivity to support daily operations and service delivery.

Educational Institution Requirements

Primary schools supporting 15-25 students online require 10-20 Mbps bandwidth, translating to 150-300GB monthly data consumption. Current cellular-based connectivity costs these institutions \\ \80,000-150,000 monthly, resulting in annual internet budgets ranging \\ \8960,000-1,800,000. These expenses often consume 30-40% of schools' technology budgets, limiting resources available for devices, software, and teacher training.

Secondary schools accommodating 50-100 students online need 25-50 Mbps bandwidth and consume 400-800GB monthly. Their connectivity costs reach ₹180,000-350,000 monthly, with annual budgets of ₹2,160,000-4,200,000. Many secondary schools reduce computer lab hours or eliminate distance learning programs due to these prohibitive costs.

Healthcare Facility Connectivity

Primary healthcare centers require 5-15 Mbps bandwidth for basic operations, electronic health records, and occasional telemedicine consultations, consuming 80-200GB monthly. Current costs of N60,000-120,000 monthly, with annual budgets of N720,000-1,440,000, often force these facilities to prioritize between connectivity and essential medical supplies.

"Page 507

ISSN No. 2321-2705 | DOI: 10.51244/IJRSI | Volume XII Issue X October 2025

Government and Business Connectivity

Local government offices need 20-40 Mbps to support staff operations and citizen services, consuming 300-600GB monthly at costs of N150,000-280,000. Annual connectivity budgets of N1,800,000-3,360,000 represent significant portions of operational budgets, often limiting digital service expansion to citizens.

Small businesses with 5-15 employees require 10-25 Mbps bandwidth, consuming 100-250GB monthly. Current costs of \$\frac{N}{70},000-140,000\$ monthly, with annual budgets of \$\frac{N}{840},000-1,680,000\$, prevent many small businesses from adopting digital marketing, e-commerce platforms, or cloud-based management systems that could enhance their competitiveness.

These high organizational costs create cascading effects throughout rural communities. Schools limit technology integration in curricula, health facilities delay telemedicine adoption, government offices cannot expand digital services, and businesses operate without modern digital tools, perpetuating rural-urban development disparities.

Hidden Costs and Service Limitations

Beyond advertised data plan costs, cellular internet access in rural areas involves numerous additional expenses and service limitations that significantly increase the total cost of ownership while reducing service quality and user experience.

Equipment and Infrastructure Expenses

Rural cellular internet users must invest in specialized equipment to achieve reliable connectivity. Mobile hotspot devices cost ₹15,000-35,000, with many users requiring multiple devices for different operators to ensure coverage. Monthly device rental fees add ₹2,000-5,000 to ongoing costs. Router and networking equipment necessary for sharing connections among multiple users or devices ranges ₹10,000-25,000. Battery backup systems, essential due to unreliable grid electricity, cost ₹20,000-50,000 and require periodic replacement.

Service Quality and Reliability Challenges

Network downtime in rural areas often necessitates backup connections from multiple operators, increasing monthly costs. Data plan restrictions frequently limit actual usage below advertised allocations through fair usage policies and throttling. Speed limitations during peak periods reduce productivity and limit application functionality. Coverage gaps between operators require maintaining relationships with multiple providers, each involving separate billing and customer service interactions.

Economic Opportunity Costs

Time spent managing multiple data subscriptions represents significant opportunity costs for rural users who must monitor usage, purchase frequent top-ups, and manage multiple operator accounts. Reduced productivity due to connectivity limitations affects educational outcomes, healthcare delivery, and business operations. Limited access to cloud services and digital tools prevents participation in modern economic activities. The inability to participate in digital economy opportunities perpetuates rural-urban income disparities and limits economic development potential.

The TVWS Alternative: A Cost-Effective Solution

Technical and Economic Advantages of TVWS

Television White Space (TVWS) technology operates in the Ultra High Frequency (UHF) band (470–694 MHz), which exhibits superior propagation characteristics compared to the higher frequency ranges (800–2600 MHz) used by cellular networks. These lower frequencies enable broader coverage and stronger signal penetration, making TVWS particularly suitable for sparsely populated rural areas with challenging terrain and weak grid infrastructure (ITU, 2022; Microsoft Airband, 2023).

"Page 508

ISSN No. 2321-2705 | DOI: 10.51244/IJRSI | Volume XII Issue X October 2025

A single TVWS base station can cover up to 10 km—more than three times the range of a typical cellular base station. Consequently, network operators can serve larger areas using fewer sites, resulting in significant reductions in capital and maintenance expenditures. Furthermore, UHF signals penetrate buildings, vegetation, and hilly terrain more effectively, ensuring better indoor reception without the need for expensive outdoor antennas or boosters. These propagation advantages reduce infrastructure requirements, power consumption, and site acquisition costs—factors that are especially critical in rural Benue State, where infrastructure deployment remains expensive and logistically challenging.

Collectively, these technical attributes enable service providers to extend affordable broadband access while maintaining commercial viability. TVWS therefore presents a promising solution for bridging the rural connectivity gap by delivering wider coverage, lower per-user costs, and improved quality of service relative to conventional cellular networks.

Lessons from International Deployments

Experience from early adopters across Africa supports the cost-effectiveness of TVWS. In Kenya, Mawingu Networks—launched in 2013 with support from Microsoft's 4Afrika Initiative and USAID—demonstrated that rural broadband could be provided at a fraction of cellular costs. After transitioning from pilot to commercial operations, Mawingu offered residential packages of 10–20 Mbps for №6,000–№12,000 monthly—substantially below equivalent cellular data plans, while maintaining profitability across 15 counties.

Similarly, South Africa has conducted several pilots (e.g., in Cape Town and Limpopo Province) connecting schools and clinics using TVWS. Though detailed pricing data are limited, evaluations consistently report service delivery costs 50–70% lower than those of cellular alternatives (Adaptrum, 2021; USTDA, 2022).

Across these cases, three cost drivers consistently emerge: (1) use of unlicensed or lightly licensed spectrum, eliminating costly spectrum fees; (2) lower base station density due to extended coverage; and (3) reduced power and maintenance requirements. These empirical lessons provide a useful framework for estimating potential cost structures under Nigerian market conditions.

Benchmarking Current Internet Costs in Rural Benue State

Primary survey data from 247 respondents across six Local Government Areas reveal that rural residents currently spend an average of ₹8,450 monthly on cellular data—approximately 18.3% of their income, well above the 2% affordability benchmark recommended by the UN Broadband Commission. This expenditure typically provides about 12.5 GB of data, at an average cost of \text{\text{N}}676 per GB.

Organizational users, such as schools and healthcare facilities, face even higher costs due to bandwidth requirements. Monthly expenditures range from ₹80,000 For primary schools, ₹180,000 For primary for secondary schools, and ₹60,000-₹120,000 for healthcare centers. Such costs constrain ICT integration and limit the adoption of digital learning, e-health, and e-governance initiatives.

Projected TVWS Costs and Comparative Savings

Drawing on international benchmarks and adjusted for Nigerian market conditions, TVWS services in rural Benue could sustainably deliver 5-20 Mbps packages at \text{N2,500-N5,000} per month for households and ₹15,000-₹35,000 for institutional users. These rates represent 60-85% cost reductions compared to current cellular offerings.

For individuals, this translates to lowering internet expenditure from 18.3% to 8.7% of monthly income—an improvement toward affordability, even if still above the global benchmark. Organizations would experience transformative savings: a typical secondary school could reduce monthly internet costs from \text{N}265,000 to ₹32,500, freeing nearly ₹2.8 million annually for ICT expansion or teacher training. Healthcare centers could save up to \$\frac{1}{2}900,000 annually, enabling reinvestment in telemedicine and digital record systems.

ISSN No. 2321-2705 | DOI: 10.51244/IJRSI | Volume XII Issue X October 2025

Cost Drivers and Implementation Considerations

The projected cost advantages of TVWS arise from three primary sources:

- 1. Infrastructure Efficiency: Extended coverage reduces the number of base stations required by up to 70%, cutting total network capital costs by more than half.
- 2. Operational Savings: Power-efficient equipment consumes roughly 60% less energy and requires less maintenance due to fewer tower sites.
- 3. Spectrum Policy: Access to unlicensed or low-cost spectrum eliminates a major expense faced by mobile operators.

Despite these advantages, realizing cost savings in Nigeria will depend on several enabling conditions. Equipment affordability remains a key barrier: customer premises devices costing $\aleph25,000-\aleph40,000$ exceed median willingness-to-pay levels. Subsidies, installment schemes, or shared access models could mitigate this gap. Regulatory clarity is equally critical—uncertainty around spectrum fees and licensing may deter investment. Furthermore, backhaul and power infrastructure deficiencies must be addressed; solar-powered base stations and microwave links can offset unreliable grid supply and limited fiber coverage.

Finally, commercial sustainability will require adequate subscriber density, reliable payment systems, and integration with existing digital literacy programs to stimulate demand.

Policy and Development Implications

The evidence indicates that TVWS can lower broadband costs for rural households and institutions by 60–85%, representing one of the most viable pathways toward universal connectivity in underserved regions. Beyond affordability, the technology's superior coverage and resilience align with Nigeria's National Broadband Plan (2020–2025) and Sustainable Development Goal 9.c, which targets universal and affordable internet access in least-connected areas.

However, the cost advantage is not self-executing. It must be supported by phased pilot deployments, equipment financing schemes, and a supportive regulatory framework that ensures low licensing costs while safeguarding quality of service. Coordinated action by the Nigerian Communications Commission (NCC), the Universal Service Provision Fund (USPF), and development partners will be essential to translating TVWS potential into measurable rural connectivity gains.

Implementation Considerations and Challenges

Infrastructure Requirements

TVWS deployment represents a fundamentally different approach to rural internet infrastructure compared to cellular network expansion, requiring specific technical components and systems that must be carefully planned and implemented to ensure successful operation.

Base Station and Transmission Infrastructure

The foundation of any TVWS network consists of base station infrastructure that differs significantly from cellular systems. TVWS radio equipment and specialized antennas must be designed for the specific propagation characteristics of television band frequencies. Tower or rooftop installation sites require strategic placement to maximize coverage while minimizing interference with television broadcasting services. Power systems present unique challenges in rural areas, necessitating either reliable grid connections or comprehensive solar power installations with battery backup capacity. Backhaul connectivity to internet backbone infrastructure often represents one of the most significant technical and cost challenges, requiring fiber optic connections, microwave links, or satellite backhaul depending on geographic location and existing infrastructure.

ISSN No. 2321-2705 | DOI: 10.51244/IJRSI | Volume XII Issue X October 2025

Customer Premises and Access Equipment

Each subscriber requires customer premises equipment (CPE) specifically designed for TVWS frequencies and protocols. Indoor or outdoor antenna systems must be properly installed and configured to receive TVWS signals effectively while avoiding interference with television reception. Network interface devices enable connection between TVWS equipment and subscribers' existing devices, while optional Wi-Fi routers provide local distribution within homes and organizations.

Network Operations and Management Systems

Successful TVWS deployment requires sophisticated spectrum database access and coordination systems that ensure compliance with regulatory requirements and avoid interference with primary television users. Network monitoring and management systems enable operators to maintain service quality and troubleshoot issues remotely. Customer support and technical service capabilities must be developed to address user issues and maintain subscriber satisfaction. Billing and account management systems need adaptation to TVWS service models and pricing structures.

Regulatory and Policy Framework

The successful deployment of TVWS networks depends critically on supportive regulatory conditions that address spectrum access, infrastructure development, and market facilitation while protecting existing television broadcasting services.

Spectrum Access and Coordination

Effective TVWS deployment requires clear licensing procedures that enable operators to access unused television spectrum without excessive bureaucratic delays or costs. Database provider certification and coordination mechanisms must ensure reliable access to spectrum availability information while maintaining interference protection for television broadcasters. Interference protection mechanisms must be robust enough to prevent disruption of television services while flexible enough to enable practical TVWS operations. Reasonable spectrum fees for rural service providers are essential to maintain the economic viability that represents TVWS technology's primary advantage.

Infrastructure Development Support

Streamlined tower and site approval processes can significantly reduce deployment timelines and costs, particularly important for rural areas where infrastructure development faces additional logistical challenges. Infrastructure sharing arrangements with existing telecommunications operators and broadcasters can reduce deployment costs and environmental impact while maximizing utilization of existing facilities. Right-of-way access for backhaul connectivity represents a critical enabling factor that can determine project feasibility, particularly for connecting remote rural communities to backbone infrastructure. Power infrastructure development and grid connection support from government agencies can address one of the most significant operational challenges facing rural telecommunications deployment.

Market Development and Competition Policy

Anchor tenant programs leveraging government institutions such as schools and healthcare facilities can provide the guaranteed revenue base necessary for sustainable business models in low-density rural markets. Digital literacy and training programs help ensure that available connectivity translates into meaningful usage and economic development. Device financing and subsidy programs can address affordability barriers that prevent rural households from accessing internet services even when connectivity becomes available. Competition policy ensuring fair market access prevents incumbent operators from blocking new entrants while promoting innovation and service quality improvements.

"Page 511

ISSN No. 2321-2705 | DOI: 10.51244/IJRSI | Volume XII Issue X October 2025

Business Model Sustainability

The long-term viability of TVWS services requires sustainable business models that address the unique challenges and opportunities of rural market conditions while maintaining the cost advantages that make the technology attractive.

Revenue Generation and Financial Sustainability

Achieving sufficient subscriber density to support network operations while maintaining affordable pricing represents a fundamental challenge in low-density rural markets. Balanced service pricing must ensure both affordability for rural users and profitability for operators, requiring careful market analysis and pricing optimization. Diversified revenue streams beyond basic connectivity, such as digital services, content delivery, and value-added applications, can improve financial sustainability while providing additional benefits to rural communities. Anchor tenant arrangements with government institutions, schools, and healthcare facilities provide guaranteed revenue that can underwrite network deployment in areas that might otherwise be commercially unviable.

Operational Efficiency and Cost Management

Automated network management systems can reduce ongoing personnel costs that would otherwise make rural operations unsustainable. Preventive maintenance programs minimize costly outages and equipment failures that disproportionately impact rural operations due to longer response times and higher repair costs. Bulk purchasing arrangements for equipment and services can achieve cost savings that improve overall project economics. Shared infrastructure arrangements with other telecommunications operators can reduce costs while improving service resilience and coverage.

Market Positioning and Competitive Strategy

Differentiated service offerings compared to cellular alternatives must emphasize the unique advantages of TVWS technology while addressing market needs not met by existing providers. Superior customer service and technical support can create competitive advantages that justify pricing and build customer loyalty in rural markets where personal relationships remain important. Community engagement and local partnership development can build market acceptance while creating sustainable operating models that align with rural community values and needs. Continuous technology upgrade and service improvement ensures that TVWS networks remain competitive as alternative technologies evolve and user requirements change.

Policy Recommendations

Regulatory Framework Development

The successful deployment of TVWS technology requires coordinated policy interventions that address regulatory barriers while creating enabling conditions for sustainable rural broadband development.

Spectrum Policy Reform

Spectrum policy represents the most critical regulatory factor determining TVWS viability. Implementing reduced spectrum fees for rural TVWS deployments serving populations under 50,000 would recognize the developmental importance of rural connectivity while acknowledging the limited revenue potential of these markets. Establishing clear database access procedures with competitive pricing ensures that operators can access spectrum coordination services without prohibitive costs that would undermine economic viability. Streamlining licensing processes for community-based operators removes bureaucratic barriers that can prevent local organizations from developing TVWS networks tailored to their specific needs. Creating effective interference resolution mechanisms that protect both TVWS operations and broadcast services builds confidence for all stakeholders while ensuring regulatory compliance.

ISSN No. 2321-2705 | DOI: 10.51244/IJRSI | Volume XII Issue X October 2025

Infrastructure Policy and Development Support

Infrastructure policy interventions can significantly reduce deployment costs and timelines while improving service quality and coverage. Mandating infrastructure sharing for government-owned towers and facilities maximizes utilization of public assets while reducing environmental impact and costs for TVWS operators. Fast-tracking environmental approvals for low-power TVWS installations recognizes the minimal environmental impact of these systems while reducing regulatory delays. Standardizing co-location fees and procedures across states creates predictability for operators while ensuring fair compensation for infrastructure owners. Supporting backbone connectivity development in rural areas addresses one of the most significant challenges facing rural telecommunications deployment, enabling multiple technologies and operators to benefit from improved infrastructure.

Market Development Initiatives

Government-led market development initiatives can create the demand foundation and financial conditions necessary for sustainable TVWS deployment while maximizing public benefit from improved connectivity.

Anchor Tenant Programs and Demand Aggregation

Guaranteeing connectivity contracts for government schools and health facilities provides the reliable revenue foundation that makes rural TVWS deployment financially viable while ensuring that public institutions receive essential connectivity. Bundling connectivity requirements with e-government service delivery creates organic demand while improving public service efficiency and accessibility. Providing demand aggregation across multiple rural communities enables operators to achieve economies of scale while serving areas that might individually be uneconomical. Offering long-term contracts with guaranteed terms reduces investment risk for TVWS operators while ensuring stable pricing for government institutions.

Financial Support and Investment Facilitation

Creating rural broadband financing windows through development banks addresses the capital requirements for TVWS deployment while directing resources toward underserved areas. Offering partial credit guarantees for TVWS deployment projects reduces financial risk while leveraging private sector efficiency and innovation. Providing import duty relief on TVWS equipment for rural deployments recognizes the developmental importance of rural connectivity while reducing deployment costs. Supporting community ownership and cooperative business models enables local control and ensures that economic benefits remain within rural communities while building sustainable operating models.

Digital Inclusion Support

Beyond connectivity provision, comprehensive digital inclusion requires supportive policies that address affordability, skills, and content barriers that can prevent rural communities from benefiting fully from improved internet access.

Affordability and Access Programs

Subsidizing customer premises equipment for low-income households addresses upfront cost barriers that prevent internet adoption even when monthly service costs are affordable. Implementing tiered pricing structures that reflect ability to pay ensures that connectivity remains accessible across different income levels while maintaining operator viability. Supporting device financing programs makes smartphones, tablets, and computers accessible to rural households that lack capital for upfront purchases. Creating digital literacy training programs in rural communities ensures that improved connectivity translates into meaningful usage and economic opportunity.

ISSN No. 2321-2705 | DOI: 10.51244/IJRSI | Volume XII Issue X October 2025

Content and Application Development

Developing local content relevant to rural community needs ensures that internet access provides practical benefits for agricultural, educational, and economic activities specific to rural contexts. Supporting agricultural information and extension services through digital platforms improves farming productivity and market access while demonstrating practical internet benefits. Promoting e-health and telemedicine applications maximizes the impact of healthcare facility connectivity while improving health outcomes in underserved areas. Encouraging local entrepreneurship and digital business development creates economic opportunities while building demand for connectivity services, creating sustainable market conditions for continued TVWS development. for low-income households

- Implement tiered pricing structures reflecting ability to pay
- Support device financing programs enabling internet access
- Create digital literacy training programs in rural communities

Content and Applications:

- Develop local content relevant to rural community needs
- Support agricultural information and extension services
- Promote e-health and telemedicine applications
- Encourage local entrepreneurship and digital business development

CONCLUSION

The cost comparison analysis demonstrates that TVWS technology offers a compelling alternative to current cellular-based internet access in rural Benue State. With potential monthly cost reductions of 60-85% for both individual users and organizations, TVWS deployment could fundamentally transform the economics of rural internet access.

Current cellular data costs of №15,000-45,000 monthly for moderate individual usage could be reduced to №3,500-6,000 through TVWS services. Organizations facing monthly internet costs of №80,000-350,000 could achieve the same connectivity at №12,000-35,000 monthly through TVWS networks. These savings would free resources for core educational, healthcare, and business activities while enabling broader community participation in the digital economy.

The superior coverage characteristics of TVWS technology, combined with dedicated spectrum access, provide service quality improvements beyond cost savings. Rural users would gain access to unlimited broadband services comparable to urban fiber connections, eliminating the data monitoring and usage restrictions that currently limit digital participation.

However, realizing these benefits requires coordinated policy action addressing spectrum access, infrastructure development, and market facilitation. Regulatory frameworks must support TVWS deployment through reasonable spectrum fees, streamlined licensing, and infrastructure sharing requirements. Government anchor tenant programs can provide the demand foundation necessary for sustainable business models.

TVWS represents more than a technological solution to rural connectivity challenges—it offers a pathway toward digital equity that could accelerate rural economic development and reduce persistent urban-rural disparities. The cost analysis demonstrates that affordable rural broadband is not only possible but economically compelling when appropriate technologies and policies are aligned.

ISSN No. 2321-2705 | DOI: 10.51244/IJRSI | Volume XII Issue X October 2025

As Nigeria pursues its digital economy objectives, TVWS technology provides a proven, cost-effective solution for extending broadband access to underserved rural populations. The evidence presented supports immediate policy action to enable TVWS deployment, creating the foundation for inclusive digital development across rural Nigeria.

The choice is clear: continue accepting high-cost cellular data as the only rural internet option, or embrace TVWS technology as a viable alternative that makes broadband access affordable for rural communities. For Benue State and similar rural contexts across Nigeria, TVWS offers the most promising path toward bridging the digital divide through economically sustainable broadband deployment.

REFERENCES

- 1. Alliance for Affordable Internet. (2020). The affordability report 2020: Assessing affordability across Africa and Asia. Web Foundation. https://a4ai.org/affordability-report/report/2020/
- 2. Communications Authority of Kenya. (2022). TV White Spaces commercial deployment impact study: Cost analysis and rural connectivity outcomes. Regulatory Impact Assessment Division.
- 3. Federal Ministry of Communications and Digital Economy. (2024). National broadband plan implementation review: Rural connectivity challenges and solutions. Government Publications Office.
- 4. Gbenga-Ilori, A. O., & Sanusi, H. (2019). Estimating TV white space capacity in Nigeria using GE-06 digital terrestrial television planned entries. IEEE Access, 7, 165965-165974. https://doi.org/10.1109/ACCESS.2019.2953503
- 5. International Telecommunication Union. (2023). ICT price trends 2023: Mobile data affordability in Sub-Saharan Africa. ITU Publications.
- 6. Microsoft Corporation. (2023). Airband initiative progress report: Rural connectivity cost comparisons and technology performance. Corporate Sustainability Reports.
- 7. MTN Group Limited. (2024). Nigeria market analysis and pricing strategy report. MTN Group Investor Relations. https://mtn-investor.com/reporting/
- 8. National Bureau of Statistics. (2023). Household income and expenditure survey 2022: Rural-urban disparities in Nigeria. NBS Publications. https://nigerianstat.gov.ng/elibrary/read/1241424
- 9. Nigerian Communications Commission. (2024a). Industry statistics quarterly report Q4 2024: Data service pricing and rural coverage analysis. NCC Market Intelligence Unit. https://ncc.gov.ng/market-data/
- 10. Nigerian Communications Commission. (2024b). Television white spaces regulatory framework: Implementation guidelines and licensing procedures. NCC Regulatory Affairs Bureau. https://ncc.gov.ng/guidelines/
- 11. Roberts, S., & Hernandez, P. (2023). Cost-effective rural broadband: Comparing TVWS and cellular deployment economics in Sub-Saharan Africa. African Journal of Information and Communication Technology, 9(1), 23-38. https://doi.org/10.4314/ajict.v9i1.3
- 12. World Bank. (2024). Digital development global database: Internet affordability and usage patterns in Nigeria. World Bank Open Data. https://data.worldbank.org/country/nigeria

a