REFERENCES
1. Jiang, L., Roberts, R., Wong, M., Zhang, L., Webber, C. J., Libera, J., Wang, Z., Kilci, A., Jenkins, M.,
Ortiz, A. R., Dorrian, L., Sun, J., Sun, G., Rashad, S., Kornbrek, C., Daley, S. A., Dedon, P. C.,
Nguyen, B., Xia, W., Saito, T., et al. (2024). β-amyloid accumulation enhances microtubule associated
protein tau pathology in an APPNL-G-F/MAPTP301S mouse model of Alzheimer's disease. Front.
2. Wenger, K., Viode, A., Schlaffner, C. N., et al. (2023). Common mouse models of tauopathy reflect
3. Yan, Y., Cook, C. N. (2023). Using mass spectrometry to validate mouse models of tauopathy. Mol.
4. Morito, T., Qi, M., Kamano, N., Sasaguri, H., Bez, S., Foiani, M., Duff, K., Benner, S., Endo, T.,
Hama, H., Kurokawa, H., Miyawaki, A., Mizuma, H., Sahara, N., Shimojo, M., Higuchi, M., Saido, T.
C., & Watamura, N. (2025). Human MAPT knockin mouse models of frontotemporal dementia for the
neurodegenerative
research
community.
Cell
Rep.
Methods
5(4),
101024.
5. Hong, X., Huang, L., Lei, F., Li, T., Luo, Y., Zeng, M., & Wang, Z. (2025). The role and pathogenesis
6. Parra Bravo, C., Giani, A. M., Madero-Perez, J., Zhao, Z., Wan, Y., Samelson, A. J., Wong, M. Y.,
Evangelisti, A., Cordes, E., Fan, L., Ye, P., Zhu, D., Pozner, T., Mercedes, M., Patel, T., Yarahmady,
A., Carling, G. K., Sterky, F. H., Lee, V. M. Y., Lee, E. B., et al. (2024). Human iPSC 4R tauopathy
model
7. Baumann, K. (2024). Modelling
8. Kühn, R., Mahajan, A., Canoll, P., & Hargus, G. (2021). Human induced pluripotent stem cell models
of frontotemporal dementia with tau pathology. Front. Cell Dev. Biol, 9, 766773.
uncovers
modifiers
of
tau
propagation.
Cell
187(10),
2446-2464.e22.
tauopathies.
Nat.
Rev. Mol.
Cell
Biol,
25,
338.
9. Samelson, A. J., Ariqat, N., McKetney, J., Rohanitazangi, G., Bravo, C. P., Bose, R., Travaglini, K. J.,
Lam, V. L., Goodness, D., Dixon, G., Marzette, E., Jin, J., Tian, R., Tse, E., Abskharon, R., Pan, H.,
Carroll, E. C., Lawrence, R. E., Gestwicki, J. E., Eisenberg, D., et al. (2024). CRISPR screens in iPSC-
derived
10. Avila, J., Hernández, F., & Perry, G. (2025). Amyloid and tau pathologies cross-talk to promote
Alzheimer's disease: novel mechanistic insights. Neuroscience, 582, 58-62.
neurons
reveal
principles
of
tau
proteostasis.
bioRxiv
2023.06.16.545386.
11. He, Z., Guo, J. L., McBride, J. D., Narasimhan, S., Kim, H., Changolkar, L., Zhang, B., Gathagan, R.
J., Yue, C., Dengler, C., Stieber, A., Nitla, M., Coulter, D. A., Abel, T., Brunden, K. R., Trojanowski,
J. Q., & Lee, V. M. (2018). Amyloid-β plaques enhance Alzheimer’s brain tau-seeded pathologies by
12. Song, Z., Gatch, A. J., Sun, Y., & Ding, F. (2023). Differential binding and conformational dynamics
of tau microtubule-binding repeats with a preformed amyloid-β fibril seed. ACS Chem. Neurosci,
13. Haut, F., Argyrousi, E. K., & Arancio, O. (2024). Re-arranging the puzzle between amyloid-beta and
tau
14. Mohan Kumar, D., & Talwar, P. (2025). Amyloid-β, tau, and α-synuclein protein interactomes as
therapeutic targets in neurodegenerative diseases. Cell Mol. Neurobiol, 45, 84.
15. Gorski, D., Evans, H., Allison, T., et al. (2025). Design and application of a Tau seed amplification
assay for screening inhibitors of Tau seeding. Alzheimers Res. Ther, 17, 214.
pathology:
an
APP-centric
approach.
Int.
J.
Mol.
Sci,
25(1),
259.
Page 1354