REFERENCES
1. Ahmed, R., & Tamim, M. T. R. (2025). Marine and Coastal Environments: Challenges, Impacts,
and Strategies for a Sustainable Future. International Journal of Science Education and
Science, 2(1), 53-60.
2. Douglas, J., Niner, H., & Garrard, S. (2024). Impacts of marine plastic pollution on seagrass
meadows and ecosystem services in Southeast Asia. Journal of Marine Science and
Engineering, 12(12), 2314.
3. Schmid, B., & Schöb, C. (2022). Biodiversity and ecosystem services in managed ecosystems.
In The ecological and societal consequences of biodiversity loss (pp. 213-231). ISTE Ltd and John
Wiley & Sons, Inc, London.
4. Hong, J. H., Semprucci, F., Jeong, R., Kim, K., Lee, S., Jeon, D., ... & Lee, W. (2020).
Meiobenthic nematodes in the assessment of the relative impact of human activities on coastal
marine ecosystem. Environmental Monitoring and Assessment, 192(2), 81..
5. Lopez-Vazquez, V., Lopez-Guede, J. M., Marini, S., Fanelli, E., Johnsen, E., & Aguzzi, J. (2020).
Video image enhancement and machine learning pipeline for underwater animal detection and
classification at cabled observatories. Sensors, 20(3), 726.
6. Jalal, A., Salman, A., Mian, A., Shortis, M., & Shafait, F. (2020). Fish detection and species
classification
in
underwater
environments
using
deep
learning
with
temporal
information. Ecological Informatics, 57, 101088.
7. Meena, T., Vijaya, J., & Harsha, B. (2025, February). Swin Transformers for Remote Sensing SAR
Image Classification. In 2025 IEEE International Conference on Emerging Technologies and
Applications (MPSec ICETA) (pp. 1-6). IEEE.
8. Vijaya, J., Gopu, A., Suman, P., & Chaitanya, S. (2024, May). Revolutionising Image
Enhancement Leveraging Power OF CNN’S. In 2024 3rd International Conference on Artificial
Intelligence For Internet of Things (AIIoT) (pp. 1-6). IEEE.
9. Yassir, A., Andaloussi, S. J., Ouchetto, O., Mamza, K., & Serghini, M. (2023). Acoustic fish
species identification using deep learning and machine learning algorithms: A systematic
review. Fisheries Research, 266, 106790.
10. Fu, C., Liu, R., Fan, X., Chen, P., Fu, H., Yuan, W., ... & Luo, Z. (2023). Rethinking general
underwater object detection: Datasets, challenges, and solutions. Neurocomputing, 517, 243-256.
11. Er, M. J., Chen, J., Zhang, Y., & Gao, W. (2023). Research challenges, recent advances, and
popular
datasets
in
deep
learning-based
underwater
marine
object
detection:
A
review. Sensors, 23(4), 1990.
12. Li, J., Yang, W., Qiao, S., Gu, Z., Zheng, B., & Zheng, H. (2024). Self-supervised marine
organism detection from underwater images. IEEE Journal of Oceanic Engineering.
13. Chungath, T. T., Nambiar, A. M., & Mittal, A. (2023). Transfer learning and few-shot learning
based deep neural network models for underwater sonar image classification with a few
samples. IEEE Journal of Oceanic Engineering, 49(1), 294-310.
14. Sohn, K., Berthelot, D., Carlini, N., Zhang, Z., Zhang, H., Raffel, C. A., ... & Li, C. L. (2020).
Fixmatch: Simplifying semi-supervised learning with consistency and confidence. Advances in
neural information processing systems, 33, 596-608.
15. Chen, T., Kornblith, S., Norouzi, M., & Hinton, G. (2020, November). A simple framework for
contrastive learning of visual representations. In International conference on machine learning (pp.
1597-1607). PmLR.
16. Snell, J., Swersky, K., & Zemel, R. (2017). Prototypical networks for few-shot learning. Advances
in neural information processing systems, 30.
17. Tarvainen, A., & Valpola, H. (2017). Mean teachers are better role models: Weight-averaged
consistency targets improve semi-supervised deep learning results. Advances in neural information
processing systems, 30.
18. Li, L., Shi, G., & Jiang, T. (2023). Fish detection method based on improved
YOLOv5. Aquaculture International, 31(5), 2513-2530.
19. Shen, Z., & Nguyen, C. (2020, November). Temporal 3D RetinaNet for fish detection. In 2020
Digital Image Computing: Techniques and Applications (DICTA) (pp. 1-5). IEEE.
Page 1369