Development and Validation of Real-Time Model Updating Protocols: The theoretical framework has to be
converted into an operational tool in the present time. There should be a design of automated processes in which
LWD data (e.g. pore pressure, wellbore shape) is automatically fed into the FEM and ML model. This gives rise
to a dynamic digital twin of the wellbore to be used in proactive decision-making.
Implement Advanced Hybrid Modeling Techniques: To overcome computational limits, there should be a
development of a hybrid modeling framework. Here, the high-fidelity FEM generates massive training datasets
for a faster, surrogate ML model (e.g., a deep neural network). This surrogate can then be deployed for instant,
real-time predictions at the rig site.
REFERENCES
1. AlBahrani, H., Papamichos, E., & Morita, N. (2021). Building an integrated drilling geomechanics model
using a machine-learning-assisted poro-elasto-plastic finite element method. SPE Journal, 26(04),
18931913. https://doi.org/10.2118/205497-PA
2. Al-Haddad, S. A., Abbas, H. A., Al-Haddad, L. A., & Al-Karkhi, M. I. (2025). Application of artificial
neural networks for predicting soil settlement in geotechnical applications with plastic waste
reinforcement above buried pipes. Discover Geoscience, 3(1), 1-17.
3. Amadike, M. P., Nwanesi, F. O., Ogbonna, C. G., Ohale, U. U., Okoli, A. E., Jacob, O. J., & Okeke, O.
C. (2024). Principles and Applications of Seismic Reflection Geophysical Technique In Petroleum
Exploration And Production: A Review. DOI: 10.5281/zenodo.14265732
4. Beckman J. (2024). Agbami field offshore Nigeria set for renewed drilling.
https://www.offshoremag.com/regional-reports/africa/news/55243211/agbami-field-offshore-nigeria-
set-for-renewed-drilling
5. Chamanzad, M., Nikkhah, M., Ramezanzadeh, A., Shi, X., Pezeshki, M., & Mostafavi, I. (2025).
Proposing an approach for geomechanical model construction based on laboratory and wellbore test
results and wellbore instability assessment in the Kangan and Dalan formations. Geomechanics and
Geophysics for Geo-Energy and Geo-Resources, 11(1), 1-23. https://doi.org/10.1007/s40948-025-
01006-5
6. Emudianughe, J. E., Eze, P. M., & Utah, S. (2021). Porosity and Permeability Trend In Agbami-Field
Using Well Log, Offshore, Niger Delta. Communication In Physical Sciences, 7(4), 531-541.
https://orcid.org/0000-0002-1217-4599
7. Gladious, J., Paul, P. S., & Mukhopadhyay, M. (2025). Machine learning based prediction of geotechnical
parameters affecting slope stability in open-pit iron ore mines in high precipitation zone. Scientific
Reports, 15(1), 21868. https://doi.org/10.1038/s41598-025-99026-4
8. Harle, S. M., & Wankhade, R. L. (2025). Machine learning techniques for predictive modelling in
geotechnical engineering: a succinct review. Discover Civil Engineering, 2(1), 1-21.
9. Jamshidi, E., Kianoush, P., Hosseini, N., & Adib, A. (2024). Scaling-up dynamic elastic logs to
pseudostatic elastic moduli of rocks using a wellbore stability analysis approach in the Marun oilfield,
SW Iran. Scientific Reports, 14(1), 19094. https://doi.org/10.1038/s41598-024-69758-w\
10. Khan, A., Li, Y., Shoaib, M., Sajjad, U., & Rui, F. (2025). Utilizing machine learning and digital twin
technology for rock parameter estimation from drilling data. Journal of Intelligent Construction, 3(2),
123.
11. Komijani, M. (2024). A mixed nonlocal finite element model for thermo‐poro‐elasto‐plastic simulation
of porous media with multiphase fluid flow. International Journal for Numerical Methods in Engineering,
125(17), e7466. https://doi.org/10.1002/nme.7466
12. Li, X., El Mohtar, C. S., & Gray, K. E. (2019). 3D poro-elasto-plastic modeling of breakouts in deviated
wells. Journal of Petroleum Science and Engineering, 174, 913-920.
https://doi.org/10.1016/j.petrol.2018.11.086
13. Lindqwister, W., Peloquin, J., Dalton, L. E., Gall, K., & Veveakis, M. (2025). Predicting compressive
stress-strain behavior of elasto-plastic porous media via morphology-informed neural networks.
Communications Engineering, 4(1), 73. https://doi.org/10.1038/s44172-025-00410-9
14. Liu, H., Su, H., Sun, L., & Dias-da-Costa, D. (2024). State-of-the-art review on the use of AI-enhanced
computational mechanics in geotechnical engineering. Artificial Intelligence Review, 57(8), 196.