
www.rsisinternational.org
INTERNATIONAL JOURNAL OF RESEARCH AND SCIENTIFIC INNOVATION (IJRSI)
ISSN No. 2321-2705 | DOI: 10.51244/IJRSI |Volume XII Issue XIII September 2025
Special Issue on Emerging Paradigms in Computer Science and Technology
|
5. Zhu Dan and Chen Xu, The Recognition of Handwritten Digits Based on BP Neural Network and the
Implementation on Android, Fourth International Conference on Intelligent Systems Design and Engineering
Applications (ISDEA), 2013, 1498-1501.
6. Adriano Mendes Gil, Cícero Ferreira Fernandes Costa Filho, Marly Guimarães Fernandes Costa, Handwritten
Digit Recognition Using SVM Binary Classifiers and Unbalanced Decision Trees, Image Analysis and
Recognition, Springer, 2014, 246-255.
7. Al-Omari F., Al-Jarrah O, Handwritten Indian numerals recognition system using probabilistic neural
networks, Adv. Eng. Inform, 2004, 9–16.
8. Junchuan Yanga, ,Xiao Yanb and Bo Yaoc, Character Feature Extraction Method Based on Integrated Neural
Network, AASRI Conference on Modelling, Identification and Control, ELSEVIER, AASRI Pro.
9. Nazri Mohd Nawi, Walid Hasen Atomi, and M. Z. Rehman, The Effect of Data Pre-Processing on Optimized
Training of Artificial Neural Networks, Procedia Technology, ELSEVIER, 11, 2013, 32 – 39.
10. K. Gaurav and Bhatia P. K., “Analytical Review of Preprocessing Techniques for Offline Handwritten
Character Recognition”, 2nd International Conference on Emerging Trends in Engineering & Management,
ICETEM, 2013.
11. Salvador España-Boquera, Maria J. C. B., Jorge G. M., and Francisco Z. M., “Improving Offline Handwritten
Text Recognition with Hybrid HMM/ANN Models”, IEEE Transactions on Pattern Analysis and Machine
Intelligence, Vol. 33, No. 4, April 2011.
12. U. Pal, T. Wakabayashi, and F. Kimura, “Handwritten numeral recognition of six popular scripts,” Ninth
International conference on Document Analysis and Recognition ICDAR 07, Vol.2, pp.749-753, 2007.
13. Anita Pal & Dayashankar Singh, “Handwritten English Character Recognition Using Neural,” Network
International Journal of Computer Science & Communication. Vol. 1, No. 2, July-December 2010, pp. 141-
144.
14. J. Pradeep, E. Srinivasan and S. Himavathi, “Diagonal Based Feature Extraction For Handwritten Alphabets
Recognition System Using Neural Network”, International Journal of Computer Science & Information
Technology (IJCSIT), Vol 3, No 1, Feb 2011.
15. Brakensiek, J. Rottland, A. Kosmala and J. Rigoll, “Offline Handwriting Recognition using various Hybrid
Modeling Techniques & Character N-Grams”, Available at
http://irs.ub.rug.nl/dbi/4357a84695495.
16. Reena Bajaj, Lipika Dey, and S. Chaudhury, “Devnagari numeral recognition by combining decision of
multiple connectionist classifiers”, Sadhana, Vol.27, part. 1, pp.-59-72, 2002.
17. Sandhya Arora, “Combining Multiple Feature Extraction Techniques for Handwritten Devnagari Character
Recognition”, IEEE Region 10 Colloquium and the Third ICIIS, Kharagpur, INDIA, December 2008.
18. Mohammed Z. Khedher, Gheith A. Abandah, and Ahmed M. AlKhawaldeh, “Optimizing Feature Selection
for Recognizing Handwritten Arabic Characters”, Proceedings of World Academy of Science Engineering
and Technology, vol. 4, February 2005 ISSN 1307-6884.
19. Sushree Sangita Patnaik and Anup Kumar Panda, “Particle Swarm Optimization and Bacterial Foraging
Optimization Techniques for Optimal Current Harmonic Mitigation by Employing Active Power Filter
Applied Computational Intelligence and Soft Computing”, Volume 2012, Article ID 897127.
20. Rafael Gonzalez, C., E. Richard Woods and L. Steven Eddins, 2003. Digital Image Processing using
MATLAB. 2nd Edn., Prentice Hall, USA., ISBN: 10: 0130085197, pp: 624.
21. Rafael C. Gonzalez and Richard E. Woods, 2002. Digital Image Processing. 2nd Edn., Prentice-Hall, Inc.,
USA., ISBN: 10: 0201180758, pp: 28-29.
22. Grother, P.J. and G.T. Candela, 1993. Comparison of handprinted digit classifiers. Technical Report NISTIR
5209, NIST. http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.45.8934
23. Pfister, M., 1996. Learning algorithms for feedforward neural networks design, combination, and analysis.
Number 435 in Fortschrittberichte Reihe 10. VDI-Verlag, Diisseldorf.
http://en.scientificcommons.org/6488386
24. Lee, S.W. and Y.J. Kim, 1995. Direct extraction of topographic features for grayscale character recognition.
IEEE. Trans. Patt. Anal. Mach. Intell., 17: 724-729. DOI: 10.1109/34.391416