
www.rsisinternational.org
INTERNATIONAL JOURNAL OF RESEARCH AND SCIENTIFIC INNOVATION (IJRSI)
ISSN No. 2321-2705 | DOI: 10.51244/IJRSI | Volume XII Issue XV October 2025 | Special Issue on Public Health
13. J. Yuan et al., ‘Application of a One-Step method for rapid detection of nucleic acids from fungi’, Mycology,
vol. 00, no. 00, pp. 1–13, 2025, doi: 10.1080/21501203.2025.2471979.
14. A. Kumar, A. Kumar, Y. Padwad, S. Sharma, and S. Kumar, ‘Development of nucleic acid extraction-free
one-step real-time RT-PCR for diagnosis of SARS-CoV-2 infection’, J. Infect. Dev. Ctries., vol. 19, no. 6,
pp. 833–842, 2025, doi: 10.3855/jidc.18079.
15. G. P. Ngaba et al., ‘Comparative analysis of two molecular tests for the detection of COVID-19 in
Cameroon’, PanAfrican Med. J., vol. 39, no. 214, 2021, doi: 10.11604/pamj.2021.39.214.30718.
16. BIOSYNEX SA, ‘BIOSYNEX AMPLIQUICK ® SARS-CoV-2’, 2021. [Online]. Available:
www.biosynex.com
17. Carl Roth, ‘Safety Data Sheet: Guanidine Thiocyanate’, 2024. [Online]. Available:
carlroth.com/medias/SDB-0017-IE-EN.pdf
18. D. Obino, M. Vassalli, A. Franceschi, A. Alessandrini, P. Facci, and F. Viti, ‘An overview on microfluidic
systems for nucleic acids extraction from human raw samples’, Sensors, vol. 21, no. 9, 2021, doi:
10.3390/s21093058.
19. S. Aryal, ‘Cell Disruption - Definition, Methods, Types, Significance’, Microbe Notes, 2021.
https://microbenotes.com/cell-disruption-methods/ (accessed Jul. 10, 2025).
20. Z. Lin, Z. Zou, Z. Pu, M. Wu, and Y. Zhang, ‘Application of microfluidic technologies on COVID-19
diagnosis and drug discovery’, Acta Pharm. Sin. B, vol. 13, no. 7, pp. 2877–2896, 2023, doi:
10.1016/j.apsb.2023.02.014.
21. L. Thomas and J. Logan, ‘Benefits of Using a Microfluidic Device’, NEWS: Medical and Life Sciences,
2025. https://www.news-medical.net/life-sciences/Benefits-of-a-Microfluidic-System.aspx (accessed Jul.
05, 2025).
22. E. S. Yu, B. H. Kang, M. S. Ahn, J. H. Jung, J. H. Park, and K. H. Jeong, ‘Highly Efficient On-Chip
Photothermal Cell Lysis for Nucleic Acid Extraction Using Localized Plasmonic Heating of Strongly
Absorbing Au Nanoislands’, ACS Appl. Mater. Interfaces, vol. 15, no. 29, pp. 34323–34331, 2023, doi:
10.1021/acsami.3c01856.
23. R. Fradique, A. Jardim, A. M. Azevedo, V. Chu, and J. P. Conde, ‘Continuous microfluidic platform
combining cell lysis and protein extraction for screening overall process conditions’, J. Chem. Technol.
Biotechnol., vol. 99, no. 3, pp. 618–625, 2023, doi: 10.1002/jctb.7564.
24. R. W. Peeling, D. L. Heymann, Y. Teo, and P. J. Garcia, ‘Diagnostics for COVID-19: moving from
pandemic response to control’, Lancet, vol. 399, pp. 757–768, 2022, doi: 10.1016/S0140-6736(21)02346-
1.
25. B. Singh, B. Datta, A. Ashish, and G. Dutta, ‘A comprehensive review on current COVID-19 detection
methods : From lab care to point of care diagnosis’, Sensors Int., vol. 2, 2021, doi:
10.1016/j.sintl.2021.100119.
26. A. Escobar, P. Chiu, J. Qu, Y. Zhang, and C. Xu, ‘Integrated Microfluidic-Based Platforms for On-Site
Detection and Quantification of Infectious Pathogens : Towards On-Site Medical Translation of SARS-
CoV-2 Diagnostic Platforms’, Micromachines, vol. 12, no. 1079, pp. 1–25, 2021, doi: 10.3390/mi12091079.
27. N. L. Welch et al., ‘Multiplexed CRISPR-based microfluidic platform for clinical testing of respiratory
viruses and identification of SARS-CoV-2 variants’, Nat. Med., vol. 28, no. 5, pp. 1083–1094, 2022, doi:
10.1038/s41591-022-01734-1.
28. J. Qian et al., ‘Rapid and comprehensive detection of viral antibodies and nucleic acids via an acoustofluidic
integrated molecular diagnostics chip: AIMDx’, Sci. Adv. , vol. 11, no. 3, 2025, doi:
10.1126/sciadv.adt5464.
29. N. Mehlawat, C. Tseng, A. Shenoda, X. Kostoulias, and K. Sharma, ‘Integrating acoustic microfluidics with
spectroscopic analysis for efficient bacterial lysis and molecular characterisation’, Biosens. Bioelectron.,
vol. 289, 2025, doi: 10.1016/j.bios.2025.117851.