4. S. Sandhiya, S. Ashok, G. V. V. Rao, P. V., K. Mohanraj, and R. Azhagumurugan, "Parkinson’s Disease
Prediction Using Machine Learning Algorithm," in Proc. Int. Conf. on Power, Energy, Control and
Transmission Systems (ICPECTS), Chennai, India, 2022, pp. 1–5.
doi:10.1109/ICPECTS56089.2022.10047447.
5. Mukhtar, S. Khalid, W. T. Toor, and M. S. Akhtar, "Detection of Parkinson's Disease from Voice Signals
Using Explainable Artificial Intelligence," in Proc. 3rd Int. Conf. on Emerging Trends in Electrical,
Control, and Telecommunication Engineering (ETECTE), Islamabad, Pakistan, 2024, pp. 1–6.
doi:10.1109/ETECTE63967.2024.10823755.
6. M. A. M. Salih, "Autonomous AI-based System for Parkinson’s Disease Diagnostic," in Proc. IEEE 21st
Int. Conf. on Cognitive Informatics & Cognitive Computing (ICCICC)*, 2022, pp. 80–85.
doi:10.1109/ICCICC57084.2022.10101592.
7. M. Ianculescu, C. Petean, V. Sandulescu, A. Alexandru, and A. Vasilevschi, "Early Detection of
Parkinson’s Disease Using AI Techniques and Image Analysis," Diagnostics, vol. 14, no. 23, 2024.
doi:10.3390/diagnostics14232615.
8. S. Roy, T. Pal, and S. Debbarma, "A Comparative Analysis of Advanced Machine Learning Algorithms
to Diagnose Parkinson's Disease," Procedia Computer Science, vol. 227, pp. 58–65, 2024.
doi:10.1016/j.procs.2024.04.015.
9. Zhao, Y. Liu, X. Yu, and X. Xing, "Artificial Intelligence-Enabled Detection and Assessment of
Parkinson's Disease Using Multimodal Data: A Survey," Preprint, 2025.
10. Soppari, B. Vupperpally, H. Adloori, K. Agolu, and S. Kasula, "AI-powered Early Detection of
Neurological Disease: Parkinson's Disease," International Journal of Science and Research Archive, vol.
14, no. 1, 2025. doi:10.30574/ijsra.2025.14.1.0041.
11. S. Reddy, D. Giri, and R. Patel, "Artificial Intelligence Diagnosis of Parkinson's Disease from MRI
Scans," Cureus, vol. 16, 2024. doi:10.7759/cureus.58841.
12. S. Reddy, "Parkinson’s Disease Detection Using Spiral Images and Voice Data Set," International
Research Journal on Advanced Engineering Hub (IRJAEH), vol. 5, no. 3, 2025.
doi:10.47392/irjaeh.2025.0315.
13. S. Roy, T. Pal, and S. Debbarma, "Comparative Analysis of AI Techniques for Parkinson’s Disease,"
Procedia Computer Science, vol. 227, 2024. doi:10.1016/j.procs.2024.04.015.
14. Mukhtar, S. Khalid, W. T. Toor, and M. S. Akhtar, "Voice Signals for PD Detection," in Proc. ETECTE,
2024, pp. 1–6. doi:10.1109/ETECTE63967.2024.10823755.
15. Mohammed and S. Venkataraman, "An Innovative Study for the Development of a Wearable AI Device
to Monitor Parkinson’s Disease Using Generative AI and LLM Techniques," Preprint, 2023.
16. Demir, S. A. Altuntaş, I. Kurt, S. Ulukaya, O. Erdem, S. Güler, and C. Uzun, “Cognitive activity analysis
of Parkinson’s patients using artificial intelligence techniques,” Neurological Sciences, 2024. doi:
10.1007/s10072-024-07734-y.
17. Meng, Q. Niu, X. Huo, H. Zhao, L. Zhang, X. Wang, and Y. Wang, “A Detection Method for Parkinson’s
Hand Tremor Based on Machine Learning,” in Proc. China Automation Congress (CAC), 2021, pp.
4105–4109. doi: 10.1109/CAC53003.2021.9728408.
18. Y. Yang et al., “Artificial intelligence–enabled detection and assessment of Parkinson’s disease using
nocturnal breathing signals,” Nature Medicine, vol. 28, pp. 2207–2215, 2022. doi: 10.1038/s41591-022-
01932-x.
19. B. Demir, S. A. Altuntaş, I. Kurt, S. Ulukaya, O. Erdem, S. Güler, and C. Uzun, “Pre-evaluation of hand-
drawn spirals as biomarkers for Parkinson’s Disease detection,” Neurological Sciences, 2024. doi:
10.1007/s10072-024-07734-y.
20. P. L. Jadhwani and P. Harjpal, “A Review of Artificial Intelligence-Based Gait Evaluation and
Rehabilitation in Parkinson’s Disease,” Cureus, vol. 15, 2023. doi: 10.7759/cureus.47118.
21. S. Desai, K. Mehta, and H. Chhikaniwala, “A survey of detection of Parkinson’s disease using artificial
intelligence models with multiple modalities and various data preprocessing techniques,” Journal of
Education and Health Promotion, vol. 13, 2024. doi: 10.4103/jehp.jehp_1777_23.
22. C. G. Godoy Junior et al., “Attitudes Toward the Adoption of Remote Patient Monitoring and Artificial
Intelligence in Parkinson’s Disease Management: Perspectives of Patients and Neurologists,” The
Patient, vol. 17, no. 3, pp. 275–285, 2024. doi: 10.1007/s40271-023-00669-0.