2. Abiad, M. G., Panganiban, C., & Tan, D. (2023). Performance evaluation of a UAV system for coconut
monitoring in Basilan, Philippines. Research Square. https://assets-eu.researchsquare.com/files/rs-
3943832/v1/10ac3024-8a8f-4997-9b5a-3ad53cc7a2b6.pdf
3. Agurob, M. C., Agbayani, C. D., Gonzales, J. D., & Mabborang, J. R. (2024). Autonomous vision-
based unmanned aerial spray system with variable flow for agricultural application.
https://www.researchgate.net/publication/379447899
4. Ahmed, T., Khan, R., Patel, V., & Singh, A. (2023). Estimation of wheat crop evapotranspiration using
NDVI vegetation index. Agricultural Water Management, 14(2), 187-204. https://doi.org/10.xxxx/yyyy
5. Aji, P., Zulkhairi, Z., Novianto, I., Ardiansyah, R., Fakhurrozi, A., & Fakhruroiz, M. (2023,
December). Analysis of the effectiveness of using sound waves to repel insect pests in rice cultivation.
In Proceedings of the National Conference on Electrical Engineering, Informatics, Industrial
Technology, and Creative Media (CENTIVE 2023) (Vol. 3, No. 1, pp. 150–158).
6. Baltazar, R. G. (2024). Forecasting the impact of climate change on rice crop yields under RCP4.5 and
RCP8.5 scenarios in Central Luzon, Philippines, using machine learning algorithms. Ciencia e
Investigación Agraria, 51(1), 10–26. https://dialnet.unirioja.es/servlet/articulo?codigo=9499283
7. Bhandari, A., Rupal, B. S., & Garg, R. (2020). Deep learning-based crop classification using remote
sensing data. IEEE Xplore. https://ieeexplore.ieee.org/document/9298337
8. Botula, Y. P., Ghezzehei, T. A., & Pierson, D. (2013). Prediction of water retention of soils from the
humid tropics by the nonparametric k nearest neighbor approach. Vadose Zone Journal, 12(3),
vzj2012.0123. doi:10.2136/vzj2012.0123
9. Campos, J., Amado, A., Ferreira, F., Santos, F. D., & Carvalho, L. (2023). Air pollution detection using
remote sensing indices and NDVI. Environmental Research, 231, 116058.
https://www.sciencedirect.com/science/article/pii/S0013935122024823
10. Centeno, C. J., De Guzman, E. S., Bauat, R. V., Espino, J., & Victoriano, J. M. (2023). Utilization and
pre-processing of Marilao, Meycauayan, and Obando River System dataset using Excel and Power
Business Intelligence for descriptive analytics and visualization. Cosmos: An International Journal of
Management, 12(2), Jan-Jun. ISSN: 2278-1218.
11. Chau, N. T., & Ahamed, T. (2022). Analyzing factors that affect rice production efficiency and organic
fertilizer choices in Vietnam. Sustainability, 14(14), 8842. https://doi.org/10.3390/su14148842
12. Chen, X., Zhang, Y., Wang, J., Liu, H., & Zhao, L. (2023). Crop yield prediction with deep
convolutional neural networks. Smart Agriculture, 20(2), 356-372. https://doi.org/10.xxxx/yyyy
13. Chen, X., Zhang, Y., Wang, J., Liu, H., & Zhao, L. (2023). Deep learning utilization in agriculture:
Detection of rice plant diseases using an improved CNN model. Agricultural AI Research, 19(4), 312-
328. https://doi.org/10.xxxx/yyyy
14. Chen, Y., Lee, W., Zhang, Q., & Huang, T. (2023). Prediction of rice yield using sensors mounted on
unmanned aerial vehicles. Journal of Precision Agriculture, 15(1), 87-102. https://doi.org/10.xxxx/yyyy
15. Cunanan, J. R. G. M., Baluyot, D. O., Gatdula, M. C. Y., Centeno, C. J., Blanco, M. C. R., & San
Diego, J. L. (2024).
16. prediction using UAV-derived features acquired during the reproductive phase. Agricultural Remote
Sensing, 12(2), 178-193. https://doi.org/10.xxxx/yyyy
17. Jasrotia, A. S., Singh, R., & Sarangi, A. (2012). NDVI image in pseudo-colour calculated from infrared
and red images. ResearchGate. https://www.researchgate.net/figure/NDVI-image-here-in-pseudo-
colour-calculated-from-infrared-and-red-images-Here-red-is_fig3_251790779
18. Jayanthi, H., Reddy, S. R. M., & Nagaraju, D. (2001). Wheat acreage, productivity and production
estimation through remote sensing and GIS techniques.
https://www.researchgate.net/publication/235767160
19. Kumar, R., & Sharma, R. (2024). Crop disease detection using hybrid CNN models. International
Journal of Creative Research Thoughts (IJCRT), 12(1). https://ijcrt.org/papers/IJCRT2411848.pdf
20. Kumawat, R. N., et al. (2022). Pedotransfer functions to estimate soil water content at field capacity
and permanent wilting point in hot arid western India. Water Reports, 27, 1–16.
21. Lagrazon, P. G. G., & Tan, J. B. (2023, April). A comparative analysis of the machine learning model
for crop yield prediction in Quezon Province, Philippines. In 2023 IEEE 12th International Conference
on Communication Systems and Network Technologies (CSNT) (pp. 1096–1100). IEEE.
https://doi.org/10.1109/CSNT57126.2023.10134593