13. Q. Xia et al., “A comprehensive review of deep learning for medical image segmentation,”
Neurocomputing, vol. 613, 2025, doi: 10.1016/j.neucom.2024.128740.
14. T. Mazhar et al., “The Role of Machine Learning and Deep Learning Approaches for the Detection of
Skin Cancer,” Healthc., vol. 11, no. 3, 2023, doi: 10.3390/healthcare11030415.
15. R. Dandu, M. Vinayaka Murthy, and Y. B. Ravi Kumar, “Transfer learning for segmentation with
hybrid classification to Detect Melanoma Skin Cancer,” Heliyon, vol. 9, no. 4, p. e15416, 2023, doi:
10.1016/j.heliyon.2023.e15416.
16. S. Kumar and A. Dawani, “Deep Learning for Radiology: Improving Diagnostic Accuracy in Medical
Imaging,” Spectr. Eng. Manag. Sci., vol. 2, no. December 2024, pp. 517–533, 2024, doi:
10.5281/zenodo.15341712.
17. H. P. Bhati, “Deep Learning for Automated Detection of Cancerous Cells in Medical Deep Learning
for Automated Detection of Cancerous Cells in Medical Imaging,” no. September, 2024, doi:
10.48047/AFJBS.6.7.
18. S. Ma et al., “Deep Learning Approaches for Medical Imaging Under Varying Degrees of Label
Availability: A Comprehensive Survey,” no. April, 2025, doi: 10.48550/arXiv.2504.11588.
19. T. Pang, P. Li, and L. Zhao, “A survey on automatic generation of medical imaging reports based on
deep learning,” Biomed. Eng. Online, vol. 22, no. 1, pp. 1–17, 2023, doi: 10.1186/s12938-023-01113-
y.
20. K. Song, J. Feng, and D. Chen, “A survey on deep learning in medical ultrasound imaging,” Front.
Phys., vol. 12, no. July, pp. 1–21, 2024, doi: 10.3389/fphy.2024.1398393.
21. M. Liu, “Application of Image Watermarking Technology Based on Deep Learning in Copyright
Protection,” Smart Innov. Syst. Technol., vol. 418 SIST, pp. 73–84, 2025, doi: 10.1007/978-981-97-
9124-8_6.
22. B. Huang and B. Gao, “Artificial intelligence in medical imaging,” iRADIOLOGY, vol. 2, no. 6, pp.
525–526, 2024, doi: 10.1002/ird3.111.
23. J. Wang, S. Wang, and Y. Zhang, “Deep learning on medical image analysis,” CAAI Trans. Intell.
Technol., vol. 10, no. 1, pp. 1–35, 2025, doi: 10.1049/cit2.12356.
24. X. Jiang, Z. Hu, S. Wang, and Y. Zhang, “Deep Learning for Medical Image-Based Cancer Diagnosis,”
Cancers (Basel)., vol. 15, no. 14, 2023, doi: 10.3390/cancers15143608.
25. T. Dhar, N. Dey, S. Borra, and R. S. Sherratt, “Challenges of Deep Learning in Medical Image
Analysis—Improving Explainability and Trust,” IEEE Trans. Technol. Soc., vol. 4, no. 1, pp. 68–75,
2023, doi: 10.1109/tts.2023.3234203.
26. T. R. Dipta, M. S. M. Rabby, T. Ahmed, M. M. H. Chowdhury, M. N. I. Shanto, and M.
Khaliluzzaman, “Advancements in Medical Imaging: A Deep Learning Approach for Kidney Disease
Classification,” 2024 IEEE Conf. Comput. Appl. Syst. COMPAS 2024, no. April 2025, 2024, doi:
10.1109/COMPAS60761.2024.10796643.
27. S. A. Bala, S. O. Kant, and A. G. Yakasai, “Deep Learning In Medical Imaging And Drug Design,” J.
Hum. Physiol., vol. 2, no. 2, pp. 32–37, 2021, doi: 10.30564/jhp.v2i2.2683.
28. Y. Han, “Deep learning methods and corresponding applications in medical imaging,” Appl. Comput.
Eng., vol. 46, no. 1, pp. 79–83, 2024, doi: 10.54254/2755-2721/46/20241106.
29. M. Sundarrajan, M. D. Choudhry, J. Biju, S. Krishnakumar, and K. Rajeshkumar, “Enhancing Low-
Light Medical Imaging through Deep Learning-Based Noise Reduction Techniques,” Indian J. Sci.
Technol., vol. 17, no. 34, pp. 3567–3579, 2024, doi: 10.17485/ijst/v17i34.2489.
30. S. E. E. Profile, “Deep learning models for automated medical imaging: accuracy, ethics, and
deployment challenges,” no. June, 2025, doi: 10.34218/IJAIDL.
31. R. R. Kothinti, “The Role of Deep Learning in Radiology and Medical Imaging: Improving Diagnostic
Accuracy,” Int. J. Acad. Res. Dev., no. February, pp. 128–143, 2024.
32. M. Blessing, “Integration of 3D Medical Imaging with Deep Learning for Enhanced Segmentation
Author : Moses Blessing Date : 25 th Sep 2024 Abstract :,” no. September, 2024.
33. J. Kim, J. Hong, and H. Park, “Prospects of deep learning for medical imaging,” Precis. Futur. Med.,
vol. 2, no. 2, pp. 37–52, 2018, doi: 10.23838/pfm.2018.00030.
34. A. Mary, J. Grace, I. Adam, B. Halle, and A. James, “Revolutionizing Emergency Care : Deep
Learning Approaches for Automated Detection of Intracranial Hemorrhage in Medical Imaging,” no.
November, 2024.