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ABSTRACT 

Approximate analytic expressions are obtained for initial value problems with purely numerical solutions. 

Symbolic regression was utilized to obtain such analytic expression. For functions that are Lipschitz 

continuous, results revealed that the maximum absolute error (sup-norm) is bounded. 

Keywords: symbolic regression, initial value problem, finite difference method 

INTRODUCTION 

Many differential equations used in Engineering and the Sciences have no closed-form analytic solutions but 

are numerically solved (Hoffman et al., 2001). Numerical methods are techniques used to evaluate a solution at 

a point without necessarily knowing the exact analytic form of the solution to an ordinary differential equation 

(ODE). In most application, approximate numerical solutions may be sufficient but for purposes of analyzing 

the mathematical properties of the solution, it may be necessary to derive an analytic expression for it. For 

such situations, approximate symbolic expressions may serve as important bases for further mathematical 

analysis. Recent developments in genetic programming can be exploited to provide such approximate solutions 

through symbolic regression. 

A first order differential equation is an initial value problem (IVP) if  (Iserlas, 2008):  

 )(,)(' tutftu  , 00 )( utu             (1) 

where   dd RxRtf ,: 0  and dRu 0 .  For higher order systems, it is possible to analyze the system as a 

larger set of first order systems such as (1) by employing extra variables.  Thus, without loss of generality, one 

may restrict attention to (1) since a higher order system can be converted to a larger system of first order 

systems. For instance,  

zuuu  ''' 0  and uz '       (2) 

where z  is an extra variable.   

Existence of a unique solution to (1) is guaranteed by the Picard-Lindelӧf Theorem which states that a unique 

solution exists provided f is Lipschitz continuous. We state Lipschitz continuity in the case of real-valued 

functions. A real-valued function RRf :  is Lipschitz continuous if there exists a positive real  K  such that 

for all real 
1x  and 

2x : 

   |𝑓(𝑥1) − 𝑓(𝑥2)| ≤ 𝐾|𝑥1 − 𝑥2|     (3) 

In fact, let RRg :  be everywhere differentiable, then g is Lipschitz continuous if and only if g has a 

bounded first derivative (Grossman et al.,2007).  
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A numerical method for solving (1) with boundary conditions is the finite difference method. Starting from (1), 

replace the derivative  tu '  by the approximation (Strikwerda, 2004): 

    
   

h

tuhtu
tu


'

       (4) 

which gives: 

         tuthftutu ,'        (5) 

To apply formula (5), choose a step-size h  and construct the sequence 0t , htt  01 , htt 202  , …, ttn    

and denote by:    nn tuu  .  

Expression (5) is then transformed into recursive relation: 

    nnnn uthfuu ,1         (6) 

By choosing h  small enough, we obtain the ordered pairs         nn utututut ,,...,,,,,, 221100 . We now seek a 

function  tu *  that passes through all of the points such that: 

      tutu
it

*sup         (7) 

is minimum.  

Theoretical and Experimental Results 

We start by defining an initial value problem. 

Definition 1.  Let 𝑓: [𝑡0, ∞)𝑥 ℝ → ℝ  be a real – valued function. A first order        equations is an initial value 

problem (IVP) if 

  𝑈′(𝑡) = 𝑓(𝑡, 𝑢(𝑡)),    𝑢(0) = 𝑢0 ∈ ℝ. 

The function 𝑢(𝑡) is a solution to the IVP if it satisfies the differential equation. We seek necessary and 

sufficient conditions for the IVP to have a unique solution. 

Definition 2.  A real-valued function 𝑓: ℝ → ℝ  is Lipschitz continuous if there exists a constant 𝑘 >  0 such 

that for all 𝑥1, 𝑥2 ∈ ℝ, 

  |𝑓(𝑥1) − 𝑓(𝑥2)| ≤ 𝑘|𝑥1 − 𝑥2|. 

Lemma 1. Let 𝑓 be Lipschitz continuous, then 𝑓 has a bounded first derivative. 

Proof: From the definition of a derivative: 

 
𝑑𝑓

𝑑𝑡
= lim

∆𝑡→0

𝑓(𝑡+∆𝑡)−𝑓(𝑡)

∆𝑡
. 

By Lipschitz continuity of f, there exists as 𝑘 > 0 for which 

 |𝑓(𝑡 + ∆𝑡) − 𝑓(𝑡)| ≤ 𝑘|∆𝑡|, ∀𝑡 

which yields 
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𝑑𝑓

𝑑𝑡
= lim

∆𝑡→0

𝑓(𝑡+∆𝑡)−𝑓(𝑡)

∆𝑡
≤ lim

∆𝑡→0

𝑘∆𝑡

∆𝑡
= 𝑘. 

It follows that  

 
𝑑𝑓

𝑑𝑡
≤ 𝑘        ∆𝑡 → 0.       ∎ 

The Picard – Lindelof Theorem guarantees a unique solution to the IVP. 

Theorem 1.  (𝑃𝑖𝑐𝑎𝑟𝑑 − 𝐿𝑖𝑛𝑑𝑒𝑙𝑜̈𝑓). Let 

  𝑢′(𝑡) = 𝑓(𝑡, 𝑢(𝑡)),    𝑢(𝑡0) = 𝑢0. 

Let f be uniformly Lipschitz continuous in 𝑢 and continuous in t. then for a given 𝜀 > 0, there exists a unique 

solution to the IVP on [𝑡0 − 𝜀, 𝑡0 + 𝜀]. 

Proof. Write the IVP as  the integral equation: 

  𝑢(𝑡0) = 𝑢0 + ∫ 𝑓(𝑠, 𝑢(𝑠))𝑑𝑠     ∀𝑡 ∈ [𝑡0,
𝑡

0
𝑡0 + 𝜀].   (8) 

where 𝜀 is to be determined. Define: 

  𝑇: 𝐶[𝑡0, 𝑡0 + 𝜀] → 𝐶[𝑡0, 𝑡0 + 𝜀] 

  𝑇(𝑢(𝑡)) = 𝑢0 + ∫ 𝑓(𝑠, 𝑢(𝑠))𝑑𝑠
𝑡

0
 

Hence, (8) is a fixed point of T. we show that T satisfies a Lipschitz condition: 

  ‖𝑇(𝑥)(𝑡) − 𝑇(𝑦)(𝑡)‖ = ‖∫ 𝑓(𝑠, 𝑥(𝑠))𝑑𝑠
𝑡

𝑡0
− ∫ 𝑓(𝑠, 𝑦(𝑠))𝑑𝑠

𝑡

𝑡0
‖ 

     ≤ ∫ ‖𝑓(𝑠, 𝑥(𝑠)) − 𝑓(𝑠, 𝑦(𝑠))‖𝑑𝑠
𝑡

𝑡0
 

     ≤ ∫ 𝑀‖𝑥(𝑠) − 𝑦(𝑠)‖𝑑𝑠
𝑡

𝑡0
    

     ≤ (𝑡 − 𝑡0)𝑀‖𝑥 − 𝑦‖∞  

     ≤ 𝜀 𝑀‖𝑥 − 𝑦‖∞    (9) 

where the norm on 𝐶[𝑡0, 𝑡0 + 𝜀] is: 

  ‖𝑢 − 𝑦‖∞ = 𝑠𝑢𝑝
𝑡

{𝑢(𝑡) − 𝑦(𝑡)}. 

Choose 𝜀 <
1

𝑀
. It follows from this choice of 𝜀  and (9) that T is a contraction mapping and is Lipschitz 

continuous. By Banach’s fixed point theorem, there exists a unique fixed point 𝑢(𝑡) for which: 

  𝑇(𝑢)(𝑡) = 𝑢(𝑡) 

which solves the IVP.      ∎ 

Finite Difference Method. 

Consider the IVP and suppose that we wish to find 𝑢(𝑡0) = 𝑢𝑏 at same later value 𝑡𝑏. If a closed form analytic 

solution can be obtained, then the problem is trivial. If, however, no such closed – form solution is available, 

where M is independent of u 

by Uniform continuity 
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then we turn to numerical methods (Strikwerda, 2004). The simplest and most commonly-used method is the 

finite difference method. The method is based on the Taylor series expansion: 

  𝑢(𝑡 + ℎ) = 𝑢(𝑡) +
𝑢′(𝑡)ℎ

1!
+

𝑢′′(𝑡)ℎ2

2!
+ ⋯     (10) 

 By truncating all terms after the first derivative term, we have: 

   𝑢(𝑡 + ℎ) = 𝑢(𝑡) + 𝑢′(𝑡)ℎ+) + 𝑂(ℎ2)     (11) 

Definition 4. A function 𝑓(𝑡) is “big Oh” 𝑔(𝑡), written, 

   𝑓(𝑡) = 𝑂(𝑔(𝑡)) 

If there exists a constant 𝑀 > 0 such that 

  𝑓(𝑡) = 𝑀|𝑔(𝑡)| as 𝑡 → ∞ 

or: 

  lim
𝑡→∞

𝑠𝑢𝑝
𝑡

𝑓(𝑡)

𝑔(𝑡)
= 𝑀    ∎ 

The error term in (11) is 𝑂(ℎ2) which tends to zero as ℎ → 0. It follows that: 

  𝑢(𝑡 + ℎ) ⋍ 𝑢(𝑡) + 𝑢′(𝑡)ℎ       (12) 

with an error proportional to ℎ2. Equation (12) can be rewritten as a recursive relation: 

 𝑢(𝑖ℎ) = 𝑢((𝑖 − 1)ℎ) + 𝑢′((𝑖 − 1)ℎ)ℎ      (13) 

 𝑢𝑛 = 𝑢𝑛−1 + 𝑢′𝑛−1 ℎ 

The closed interval [𝑡0, 𝑡𝑏 ] is divided into non-overlapping sub-intervals of length h, i.e. |[𝑡𝑖, 𝑡𝑖−1 ]| = ℎ. The 

number of such sub-intervals is: 

 𝑛 =
𝑡𝑏−  𝑡0

ℎ
          (14) 

Convergence. For (13) to be useful, we need to show that the sequence {𝑢𝑛}𝑛=0
∞  converges. 

Lemma 2. For 𝑡 ∈ [𝑡0, 𝑡0 + 𝜀], the sequence {𝑢𝑛}𝑛=0
∞   of (13) is a Cauchy sequence. 

Proof.  

Let 𝑛 > 𝑚, 𝑚, 𝑛 ∈ 𝑍+ and let 𝑢𝑛(𝑡) = 𝑢𝑛−1(𝑡) + 𝑓(𝑡, 𝑢𝑛−1)ℎ where h is the step size and the function f is 

Lipschitz continuous. Now,  

 ‖𝑢𝑛 − 𝑢𝑚‖ = ‖𝑢𝑛 − 𝑢𝑛−1 + 𝑢𝑛−1 + ⋯ + 𝑢𝑚+1 − 𝑢𝑚‖ 

   ≤ ‖𝑢𝑛 − 𝑢𝑛−1‖ + ‖𝑢𝑛−1 − 𝑢𝑛−2‖ + ⋯ + ‖𝑢𝑚+1 − 𝑢𝑚‖ 

   ≤ ‖𝑓(𝑡, 𝑢𝑛−1)ℎ‖ + ‖𝑓(𝑡, 𝑢𝑛−2)ℎ‖ + ⋯ + ‖𝑓(𝑡, 𝑢𝑚)ℎ‖ 

   ≤ 𝑀ℎ(‖(𝑢𝑛−1)‖ + ‖(𝑢𝑛−2)‖ + ⋯ + ‖(𝑢𝑚)‖)  (15) 

where M is a Lipschitz constant. Let 
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 𝐿 = max

𝑘
{‖𝑢𝑛−𝑘‖}       (16) 

Then: 

 ‖𝑢𝑛 − 𝑢𝑚‖ ≤ 𝑀𝐿𝑛  ℎ.  As  𝑛 → ∞, ℎ = 𝑂(
1

𝑛2) → 0,              (17) 

hence, 

‖𝑢𝑛 − 𝑢𝑚‖ → 0        ∎        (18) 

Theorem 2. The sequence {𝑢𝑛}𝑛=0
∞  converges.  

Proof. 

Since {𝑢𝑛(𝑡)}𝑛=0
∞  is a Cauchy sequence of real numbers for each t, it follows that {𝑢𝑛(𝑡)}converges. The 

𝑃𝑖𝑐𝑎𝑟𝑑 − 𝐿𝑖𝑛𝑑𝑒𝑙𝑜̈𝑓 theorem guarantees that 𝑢𝑛(𝑡) → 𝑢(𝑡) as 𝑛 → ∞  ∎ 

Symbolic Regression 

Symbolic regression is a type of regression analysis that does not specify the functional form of relationships 

between two variables. It utilizes a genetic algorithm to execute the analysis. This is included as an option in 

much statistical software. For this purpose, a one-month trial version of the software EUREQA was used to 

analyze the given data set (Regalado et al., 2019. 

The data set analyzed consists of the ordered pairs {(ti,ui)}i=0
n  generated by the recursive relation (13). As 

shown in the preceding sections, the computed values ui(ti) can approximate the true solution u (ti) as closely 

as desired. These approximations provide a reliable input for symbolic regression, enabling the discovery of an 

analytic expression that best fits the numerical solution. 

Let 𝑡𝑖 = 𝑖ℎ,     𝑖 = 0,1,2, … , 𝑛 and consider the pairs {(𝑡𝑖 , 𝑢𝑖)} . In traditional regression analysis, we assume a 

model of the form: 

 𝑢(𝑡) = 𝑔(𝑡) + 𝜀(𝑡)         (19) 

where 𝑔(𝑡) is a functional form that is completely specified except for the parameter values and 𝜀(𝑡) are 

random errors with zero expectation and constant variance. For instance, 𝑔 (t) may be a third degree 

polynomial: 

  𝑢(𝑡) = 𝑎 + 𝑏𝑡 + 𝑐𝑡2 + 𝑑𝑡3 + 𝜀(𝑡)       (20) 

where a, b, c and d are parameter to be estimated from the data. 

In symbolic regression, the functional form of 𝑔(𝑡) is not specified but is assumed to be derived from a class 

of functions called building blocks. Let  

 𝛽 = {𝑔|𝑔(𝑡) ∈ 𝐶[𝑡0,𝑡0 + 𝜀]}        (21) 

be the building blocks of function that are continuous. Symbolic regression, then, searches the space 𝛽 for an 

optimal combination of building blocks that best fit the observations. Fitness is a user-defined quantity such as 

the mean – absolute error (MAE), the maximum error (ME) or the squared correlation goodness of fit (𝑅2). 

The search process is implemented by applying the principles of genetic algorithm (GA). We consider the case 

when 𝛽 has a finite number of building blocks: 

 𝛽 = {𝑔1, 𝑔2, … , 𝑔𝑚} 

Each 𝑔𝑖(𝑡) is assigned as fitness value e.g. maximum error, when fitted to the observations. Let  
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 ℑ = {𝐹(𝑔1), 𝐹(𝑔2), … , 𝐹(𝑔𝑚)}       (22) 

be the set of fitness values for the building blocks. The building are then arranged from the fittest to the least – 

fit function. Let  

 ℑ(𝐼) = {𝐹(𝑔(1)), 𝐹(𝑔(2)), … , 𝐹(𝑔(𝑚))} 

where the subscripts denote ordering based on the fitness values i.e. 𝐹(𝑔(𝑖)) is more fit than 𝐹(𝑔(𝑖−1)). 

A second generation of building blocks is obtained by combining the most fit building blocks and recomputing 

the fitness values of the resulting combinations of building blocks. The process continuous until a desired 

fitness value is obtained. Gelly et al. (2017) proved under sufficient conditions , the solution given by Genetic 

Programming converges when the number of examples goes to infinity , toward the actual function used to 

generate the examples. This property is known in Statistical Learning as Universal Consistency. The authors 

provided new results in the direction of bloat analysis: structural bloat and functional bloat. Structural bloat 

occurs when no optimal solution , that is, when no function exactly matches all possible examples, is 

approximated by the search space. In such cases, the authors demonstrated that optimal solutions of increasing 

accuracy will also exhibit increasing complexity. ). On the other hand,  functional bloat is defined as the bloat 

that takes place when programs length keeps on growing even though an optimal solution (of known 

complexity) does lie in the search space. 

Illustration and Application 

We provide a simple illustration of the proposed method for deriving an approximate analytic solution to a 

differential equation based on a numerically-derived ordered pairs. The illustration can be solved analytically. 

Thus, the solution is known which allows us to evaluate the proposed procedure more clearly. 

𝑇ℎ𝑒 𝐼𝑉𝑃 ∶ 𝑢′(𝑡) =  5𝑢 + 2,    𝑢(0) =  0 

𝑇ℎ𝑒 𝑎𝑛𝑎𝑙𝑦𝑡𝑖𝑐 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛: 𝑢(𝑡) =  .4 (exp(5𝑡) − 1) 

We confine the search domain on the interval 𝑡 𝜀 [0,1] and we seek the value u(1). We chose step sizes h = .1, 

.01, .001, .0001, .00001 and observed the maximum absolute error: 

𝑆𝑢𝑝 = 𝑚𝑎𝑥𝑡|𝑢(𝑡) −  𝑢(𝑡)𝑝𝑟𝑒𝑑| 

The finite difference equation gives 

𝑢𝑛 =  𝑢𝑛−1  +  (5𝑢𝑛−1 +  2)ℎ ,   𝑢0 = 0 

Table 1 shows the relationship between  step size and the maximum absolute error (sup).  

Table 1: Relationship of step size and maximum absolute error 

step size sup 

0.1 36.3 

0.01 6.765 

0.001 0.735 

0.0001 0.0744 

0.00001 0.0742 

The estimated regression equation shows that as the step size increases, the maximum absolute error likewise 

increases. 
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𝑇ℎ𝑒 𝑟𝑒𝑔𝑟𝑒𝑠𝑠𝑖𝑜𝑛 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛 𝑖𝑠 

𝑠𝑢𝑝  0.865 +  357 𝑠𝑡𝑒𝑝 𝑠𝑖𝑧𝑒 

Predictor        Coef     SE Coef          T        P 

Constant       0.8647      0.7886       1.10    0.353 

step siz       356.63       17.55      20.33    0.000 

S = 1.533       R-Sq = 99.3%     R-Sq(adj) = 99.0%  

Using h = 0.001, we used symbolic regression using a trial version of EUREQA to obtain a closed form 

expression for the solution of the IVP. A portion of the data set is reproduced below: 

Table 2: Portion of the Finite Difference Solution with h = .001 

T u 

0 0 

0.001 0.002 

0.002 0.00401 

0.003 0.00603 

0.004 0.00806 

0.005 0.010101 

0.006 0.012151 

0.007 0.014212 

0.008 0.016283 

0.009 0.018364 

0.01 0.020456 

The solution chosen has a maximum error of 0.00000515. The exact expression is shown on the screenshot 

below: 
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Figure 1: Screenshot of the Final Solution 

The final approximate solution to the IVP when rounded to the first decimal place is: 

𝑢(𝑡) =  .4(exp(5𝑡) −  1) − (9.5𝑥 10−5) cos(3.6 + 𝑡) exp (5𝑡) 

The maximum difference between the approximate solution and the actual solution is: 

|𝑢(𝑡) −  𝑢(𝑡)̂| =  .00155 

Let  

 𝑢̂(𝑡𝑖) =solution obtained at 𝑡𝑖  by the finite difference method 

 𝑢̂̂(𝑡𝑖) = symbolic regression value at 𝑡𝑖 using 𝑢̂(𝑡𝑖) as inputs  

 𝑢(𝑡𝑖) = actual value of the solution at 𝑡𝑖 

Then 

 sup
0≤𝑡𝑖≤𝑡

‖𝑢(𝑡𝑖) − 𝑢̂̂(𝑡𝑖)‖ = sup
0≤𝑡𝑖≤𝑡

‖𝑢(𝑡𝑖) − 𝑢̂(𝑡𝑖) + 𝑢̂(𝑡𝑖) − 𝑢̂̂(𝑡𝑖)‖ 

    ≤ ‖𝑢(𝑡𝑖) − 𝑢̂(𝑡𝑖)‖∞ + ‖𝑢̂(𝑡𝑖) − 𝑢̂̂(𝑡𝑖)‖
∞

 

    ≤ 𝜀1+𝜀2 = 𝜀 

As ℎ → 0, 𝜀1 → 0 and if the solution 𝑢(𝑡) is in the search space 𝛽, 𝜀2 → 0. Thus, ‖𝑢(𝑡𝑖) − 𝑢̂̂(𝑡𝑖)‖
∞

→ 0 as 

𝑛 → ∞.  

REFERENCES 

1. Blickle T. and Thiele L. (1994).Genetic programming and redundancy. In J. Hopf, editor, Genetic 

Algorithms Workshop at KI-94, pages 33–38. Max-Planck-Institut f¨ur Informatik. 

2. Gelly Sylvain, Teytaud Olivier, Bredeche Nicolas, Schoenauer Marc (2017) Symbolic regression, 

parsimony, and some theoretical considerations about GP search space .Equipe TAO - INRIA Futurs, 

LRI, Bat. 490, University Paris-Sud, 91405 Orsay Cedex. France 

3. Grossmann, C, Hans-G. Roos; Martin Stynes (2007). Numerical Treatment of Partial Differential 

Equations. Springer Science & Business Media.  

4. Hoffman JD; Frankel S (2001). Numerical methods for engineers and scientists. CRC Press, Boca 

Raton. 

5. Iserlas, A. (2008). A first course in the numerical analysis of differential equations. Cambridge 

University Press.  

6. Koza J. R.(1992). Genetic Programming: On the Programming of Computers by Means of Natural 

Selection. MIT Press, Cambridge, MA, USA. 

7. Regalado et al. (2019). Approximate Analytic Solution To The Lotka-Volterra Predator–Prey 

Differential Equations Model. Journal of Higher Education Research Disciplines 4 (1), 38-47. 

8. Strikwerda, J/ (2004). Finite Difference Schemes and Partial Differential Equations (2nd ed.). SIAM. 

 

  

 

 

https://rsisinternational.org/journals/ijrsi
https://rsisinternational.org/journals/ijrsi
http://www.rsisinternational.org/
https://scholar.google.com/citations?view_op=view_citation&hl=en&user=dW8IE0IAAAAJ&citation_for_view=dW8IE0IAAAAJ:9yKSN-GCB0IC
https://scholar.google.com/citations?view_op=view_citation&hl=en&user=dW8IE0IAAAAJ&citation_for_view=dW8IE0IAAAAJ:9yKSN-GCB0IC

