v. Foster collaboration between machine learning experts and cybersecurity professionals to translate
these findings into practical defense mechanisms.
REFERENCES
1. Abualhaj, M. M., Abu-Shareha, A. A., Shambour, Q. Y., Al-Khatib, S. N., and Hiari, M. O. (2024).
Tuning the k value in k-nearest neighbors for malware detection. IAES International Journal of
Artificial Intelligence (IJ-AI), 13(2), 2275–2282. https://doi.org/10.11591/ijai.v13.i2.pp2275-2282
2. Al‑Ruwili, A. S. M., & Mostafa, A. M. (2023). Analysis of Ransomware Impact on Android Systems
using Machine Learning Techniques. International Journal of Advanced Computer Science and
Applications, 14(11), 775–785. https://doi.org/10.14569/IJACSA.2023.0141178
3. Asad, A. B., Mansur, R., Zawad, S., Evan, N., and Hossain, M. I. (2020). Analysis of malware
prediction based on infection rate using machine learning techniques. 2020 IEEE Region 10
Symposium (TENSYMP). https://doi.org/10.1109/TENSYMP50017.2020.9230624
4. Aurangzeb, S., Rais, R. N. B., Aleem, M., Islam, M. A., and Iqbal, M. A. (2021). On the classification
of Microsoft-Windows ransomware using hardware profile. PeerJ Computer Science, 7,
e361. https://doi.org/10.7717/peerj-cs.361
5. Bawazeer, O., Helmy, T., and Al-Hadhrami, S. (2021). Malware detection using machine learning
algorithms based on hardware performance counters: Analysis and simulation. Journal of Physics:
Conference Series, 1962(1), 012010. https://doi.org/10.1088/1742-6596/1962/1/012010
6. Bold, R., Al-Khateeb, H., and Ersotelos, N. (2022). Reducing false negatives in ransomware detection:
A critical evaluation of machine learning algorithms. Applied Sciences, 12(24), 12941.
https://doi.org/10.3390/app122412941
7. Breiman, L. (2001). Random forests. Machine Learning, 45(1), 5–32.
https://doi.org/10.1023/A:1010933404324
8. Egunjobi, S., Parkinson, S., and Crampton, A. (2019). Classifying ransomware using machine learning
algorithms. In Intelligent Data Engineering and Automated Learning – IDEAL 2019 (pp. 45–52).
Springer. https://doi.org/10.1007/978-3-030-33617-2_5
9. Fuyong Xing, Yuanpu Xie, Hai Su, Fujun Liu, Lin Yang (2018). “Deep Learning in Microscopy Image
Analysis: A Survey.” IEEE Transactions on Neural Networks and Learning Systems, 29(10), 4550–
4568. https://doi.org/10.1109/TNNLS.2017.2766168
10. Khammas, B. M. (2022). Comparative analysis of various machine learning algorithms for ransomware
detection. TELKOMNIKA (Telecommunication Computing Electronics and Control), 20(1), 43–
52. https://doi.org/10.12928/telkomnika.v20i1.18812
11. Kok, S., Abdullah, A., Jhanjhi, N. Z., and Supramaniam, M. (2019). Prevention of crypto-ransomware
using a pre-encryption detection algorithm. Computers, 8(4), 79.
https://doi.org/10.3390/computers8040079
12. Masum, M., Faruk, M. J. H., Shahriar, H., Qian, K., Lo, D., and Adnan, M. I. (2022). Ransomware
classification and detection with machine learning algorithms. 2022 IEEE 12th Annual Computing and
Communication Workshop and Conference (CCWC), 0316–
0322. https://doi.org/10.1109/CCWC54503.2022.9720869
13. Ngirande, H., Muduva, M., Chiwariro, R., and Makate, A. (2024). Detection and analysis of Android
ransomware using the support vector machines. International Journal for Research in Applied Science
and Engineering Technology, 12(1), 241–252. https://doi.org/10.22214/ijraset.2024.57885
14. Scaife, N., Carter, H., Traynor, P., & Butler, K. R. B. (2016). Cryptolock (and Drop It): Stopping
Ransomware Attacks on User Data. 2016 IEEE 36th International Conference on Distributed
Computing Systems (ICDCS).
15. Sharma, S., Kumar, R., and Krishna, C. R. (2021). A survey on analysis and detection of Android
ransomware. Concurrency and Computation: Practice and Experience, 33(16),
e6272. https://doi.org/10.1002/cpe.6272
16. Ucci, D., Aniello, L., & Baldoni, R. (2019). Survey of machine learning techniques for malware
analysis. Computers & Security, 81, 123–147.