a
6. Hossain, M. D., Faruk, M. I., Plabon, F. W., & Jyoti, J. S. (2025). Sustainable supply chain project
management: Strategies for reducing carbon footprints. Journal of Business and Management Studies,
7(2), 78–90.
7. Islam, S. M. R., Hossain, M. D., Faruk, M. I., Plabon, F. W., Saha, U. S., & Albi, M. A. I. (2025). A
systematic review of sustainable engineering management for advancing energy access under SDG 7.
Journal of Computer Science and Technology Studies, 7(6), 138–157.
8. Khraisat, A., Gondal, I., Vamplew, P., & Kamruzzaman, J. (2019). Survey of intrusion detection
systems: Techniques, datasets and challenges. Cybersecurity, 2(1), 20. https://doi.org/10.1186/s42400-
019-0038-7
9. Li, X., Jiang, P., Chen, T., Luo, X., & Wen, Q. (2021). A survey on the security of blockchain systems.
Future Generation Computer Systems, 107, 841–853. https://doi.org/10.1016/j.future.2017.08.020
10. Liang, B., Zheng, Z., & Wang, J. (2022). AI-enabled blockchain architecture for smart cybersecurity
defense. Future Generation Computer Systems, 132, 215–230.
https://doi.org/10.1016/j.future.2022.02.006
11. Nguyen, N. G., Nguyen, T. T., Nguyen, T. D., & Van Nguyen, H. (2022). AI-enhanced cybersecurity:
Emerging applications and research challenges. Information Sciences, 596, 117–137.
https://doi.org/10.1016/j.ins.2022.04.042
12. Patel, A., Taghavi, M., Bakhtiyari, K., & Jelonek, I. (2013). An intrusion detection and prevention
system in cloud computing: A systematic review. Journal of Network and Computer Applications,
36(1), 25–41. https://doi.org/10.1016/j.jnca.2012.08.007
13. Rose, S., Borchert, O., Mitchell, S., & Connelly, S. (2020). Zero trust architecture (Special Publication
800-207). National Institute of Standards and Technology. https://doi.org/10.6028/NIST.SP.800-207
14. Sahu, R., Prasad, R. V., & Sharma, S. (2020). Limitations of traditional cybersecurity systems and the
emergence of AI-based approaches. Procedia Computer Science, 171, 770–777.
https://doi.org/10.1016/j.procs.2020.04.082
15. Santos, J., Filgueira, R., & López, G. (2021). A deep learning approach for user behavior analytics in
cybersecurity. Journal of Network and Computer Applications, 174, 102906.
https://doi.org/10.1016/j.jnca.2020.102906
16. Sharif, M. I., Li, J., & Rehman, M. U. (2021). Blockchain meets AI: Integrating blockchain and
artificial intelligence for secure and scalable industrial applications. Information Fusion, 67, 354–367.
https://doi.org/10.1016/j.inffus.2020.10.001
17. Sommer, R., & Paxson, V. (2010). Outside the closed world: On using machine learning for network
intrusion detection. In 2010 IEEE Symposium on Security and Privacy (pp. 305–316). IEEE.
https://doi.org/10.1109/SP.2010.25
18. Vinayakumar, R., Soman, K. P., & Poornachandran, P. (2019). Evaluating deep learning approaches to
characterize and classify network traffic. Journal of Supercomputing, 75, 207–235.
https://doi.org/10.1007/s11227-018-2465-2
19. Wang, W., Zhu, M., Zeng, X., Ye, X., & Sheng, Y. (2021). Malware traffic classification using
convolutional neural network for representation learning. International Journal of Information Security,
20(2), 177–191. https://doi.org/10.1007/s10207-020-00513-w
20. Xu, R., Li, Q., & Li, W. (2021). Secure and decentralized access control using smart contracts and
blockchain. IEEE Access, 9, 28214–28226. https://doi.org/10.1109/ACCESS.2021.3058773
21. Zheng, Z., Xie, S., Dai, H., Chen, X., & Wang, H. (2018). An overview of blockchain technology:
Architecture, consensus, and future trends. In 2017 IEEE International Congress on Big Data (pp. 557–
564). IEEE. https://doi.org/10.1109/BigDataCongress.2017.85
22. Zyskind, G., Nathan, O., & Pentland, A. (2015). Decentralizing privacy: Using blockchain to protect
personal data. In 2015 IEEE Security and Privacy Workshops (pp. 180–184). IEEE.
https://doi.org/10.1109/SPW.2015.27
Appendices
The appendices provide detailed technical artifacts, empirical data, and implementation logic that support the
theoretical and experimental contributions of this study. These supplementary materials are essential for
researchers and practitioners seeking to reproduce, extend, or operationalize the proposed AI-Blockchain
cybersecurity framework.