INTERNATIONAL JOURNAL OF RESEARCH AND SCIENTIFIC INNOVATION (IJRSI)
ISSN No. 2321-2705 | DOI: 10.51244/IJRSI |Volume XII Issue VIII August 2025
Page 812
www.rsisinternational.org
Degree of Approximation of Function in the Generalized
Zygmund Class By (E, Q) (
,
) Means of Fourier Series
Santosh Kumar Sinha
1
and Pragya Sharma
2
1
Dept. of Mathematics, Lakhmi Chand Institute of Technology, Bilaspur (C.G.), India
2
Ghss Kudekela, Block-Dharamjaigarh Raigarh (C.G.), India
DOI: https://doi.org/10.51244/IJRSI.2025.120800068
Received: 07 Aug 2025; Accepted: 12 Aug 2025; Published: 05 September 2025
ABSTRACT
In this paper, a theorem on degree of approximation of function in the generalized Zygmund class
by (E, q) (
, Pn) means of Fourier series has been established.
Keywords : Degree of approximation , Generalized Zygmund class , (
, Pn) mean , (E, q) mean, (E, q)
(
, Pn) mean
.
MSC: 41A24, 41A25, 42B05, 42B08
INTRODUCTION
The degree of approximation of function belonging to different classes like Lip α, (Lip α, p), Lip(ξ(t),p) ,
Lip(Lp , ξ(t)) have been studied by many mathematician using different summability means. The error
estimation of function in Lipschitz and Zygmund class using different means of Fourier series and
conjugate Fourier series have been great interest among the researcher. The generalized Zygmund class of
functions has been widely studied in harmonic analysis and Fourier approximation because it captures
functions whose smoothness is characterized by a controlled modulus of continuity. This class generalizes the
well-known Zygmund class and includes functions with smoother as well as rougher behavior, making it an
appropriate setting for studying precise error bounds in trigonometric approximations.
A powerful approach for enhancing convergence involves the use of product summability methods. In
particular, the (E, q) means, when combined with the weighted Nörlund means (
, Pn) produce a generalized
summability method denoted by (E, q) (
, Pn) means. The (E, q) means accelerate convergence by
modifying partial sums, while the (
, Pn) transformation introduces flexibility through a weight sequence
{Pn}. The generalized Zygmund class was introduced by Kim [1] Leindler [2] Moricz [3], moricz and
Nemeth [4]etc. Recently Singh et. al. [7] Mishra et al. [5], Pradhan et al. [6], Sinha et al. [8] find the
results in Zygmund class by using different summability Means. In this paper we find the degree of
approximation of function in the generalized Zygmund class by (E, q) (
, Pn) means of Fourier series.
Definition
Let be a periodic function of period  integrable in the sense of Lebesgue over
[π, - π]. Then the Fourier series of given by
󰇛
󰇜
󰇛

󰇜

……..(2.1)
Zygmund class z is defined as
INTERNATIONAL JOURNAL OF RESEARCH AND SCIENTIFIC INNOVATION (IJRSI)
ISSN No. 2321-2705 | DOI: 10.51244/IJRSI |Volume XII Issue VIII August 2025
Page 813
www.rsisinternational.org
󰇝
󰇟

󰇠

󰇛
󰇜
󰇛
󰇜

󰇛
󰇜
󰇛
󰇜
󰇞
.
In this paper , we introduce a generalized Zygmund
󰇛
󰇜
defined as
󰇛
󰇜

󰇟

󰇠
󰇛
󰇜
󰇛
󰇜

󰇛
󰇜


󰇛
󰇛󰇜
󰇜
...........(2.2)
Where  and is a continuous non negative and non decreasing
function. If we take ,  , then
󰇛
󰇜
class reduces to
the z class.
We write
(t) =
󰇛
󰇜

󰇛
󰇜
󰇛 󰇜 …….(2.3)
󰇛
󰇜
󰇛󰇜
󰇡
󰇢

󰇫
󰇛
󰇜
󰇛
󰇜

󰇬

…….(2.4)
MAIN RESULT
In this paper we prove the following theorem.
Theorem1- Let be a  periodic function ,Lebesgue integrable in
󰇟

󰇠
and belonging to
generalized Zygmund class
󰇛󰇜
󰇛
󰇜
. Then the degree of approximation of function g by (E,q )(
,
Pn) product mean of Fourier series is given by

󰇛
󰇜


󰇛󰇜
󰇛󰇜


Where
󰇛
󰇜

󰇛
󰇜
denotes the Zygmund moduli of continuity such that
󰇛󰇜
󰇛󰇜
is positive and
increasing.
Theorem 2- Let be a  periodic function, Lebesgue integrable in
󰇟

󰇠
and belonging to
generalized Zygmund class
󰇛󰇜
󰇛
󰇜
. Then the degree of approximation of function g by (E,q)(
,
Pn) product mean of Fourier series is given by

󰇛
󰇜

󰇛󰇜
󰇧
󰇛󰇜󰇡

󰇢
󰇡

󰇢
󰇨󰇡

󰇢
where
󰇛
󰇜

󰇛
󰇜
denotes the Zygmund moduli of continuity such that
󰇛󰇜
󰇛󰇜
is positive and decreasing.
LemmaTo prove the theorem we need the following Lemma.
Lemma 4(a) - For

we have 
󰇛󰇜
󰇛󰇜 ….…(4.1)
INTERNATIONAL JOURNAL OF RESEARCH AND SCIENTIFIC INNOVATION (IJRSI)
ISSN No. 2321-2705 | DOI: 10.51244/IJRSI |Volume XII Issue VIII August 2025
Page 814
www.rsisinternational.org
Proof - For

and then
󰇛
󰇜
󰈅
󰇛󰇜
󰇡
󰇢

󰇫
󰇛
󰇜
󰇛
󰇜

󰇬

󰈅

󰇛󰇜
󰈅
󰇡
󰇢

󰇫
󰇛
󰇜
󰇛
󰇜

󰇬

󰈅

󰇛󰇜
󰇻
󰇡
󰇢

󰇛

󰇜
󰇥

󰇦

󰇻

󰇛󰇜
󰇛󰇜
󰇻
󰇡
󰇢


󰇻
󰇛󰇜
Lemma 4(b) - For


 we have

󰇛
󰇜
󰇡
󰇢 ……….(4.2)
Proof - For



󰇛
󰇜
󰈅
󰇛󰇜
󰇡
󰇢

󰇫
󰇛
󰇜
󰇛
󰇜

󰇬

󰈅

󰇛󰇜
󰈅
󰇡
󰇢

󰇫
󰇛
󰇜
󰇛
󰇜

󰇬

󰈅

󰇛󰇜
󰇻
󰇡
󰇢


󰇻
󰇡
󰇢
Lemma 4(c) Let
󰇛󰇜
then for
(i)
󰇛󰇜
󰇛
󰇛
󰇜
󰇜
(ii)
󰇛

󰇜
󰇛

󰇜
󰇛󰇜
󰇛
󰇛
󰇜
󰇛
󰇛
󰇜
(iii) If 󰇛󰇜 and 󰇛󰇜 are defined as in theorem then
󰇛

󰇜
󰇛

󰇜
󰇛󰇜
󰇛󰇜
󰇛󰇜
󰇛󰇜
where
󰇛
󰇜
󰇛
󰇜
󰇛
󰇜

󰇛
󰇜
Proof of Theorem 1
Let
󰇛󰇜 denotes the partial sum of fourier series given in (2.1) then we have
󰇛
󰇜
󰇛
󰇜

󰇛󰇜
󰇛
󰇜


….(5.1)
INTERNATIONAL JOURNAL OF RESEARCH AND SCIENTIFIC INNOVATION (IJRSI)
ISSN No. 2321-2705 | DOI: 10.51244/IJRSI |Volume XII Issue VIII August 2025
Page 815
www.rsisinternational.org
The (E,q) transform
of
is given by
󰇛
󰇜
󰇛󰇜
󰇛󰇜󰇫


󰇡
󰇢
󰇡
󰇢

󰇬
. ……(5.2)
The (E,q)(
, Pn) transform of
󰇛󰇜 is given by

󰇛󰇜
󰇛
󰇜
󰇛󰇜
󰇛

󰇜
󰇡
󰇢

󰇫
󰇛
󰇜
󰇛
󰇜

󰇬

……(5.3)
󰇛
󰇜

󰇛
󰇜

.
.........(5.4)
Let
󰇛
󰇜

󰇛
󰇜
󰇛

󰇜

󰇛
󰇜

then
󰇛
󰇜
󰇛
󰇜

󰇛
󰇜
󰇟
󰇛
󰇜
󰇛
󰇜

󰇛
󰇜󰇠

󰇛
󰇜

using the generalized Minkowaski’s inequality we get
󰇛

󰇜
󰇛

󰇜
󰇛󰇜
󰇱

󰇛
󰇜
󰇛
󰇜

󰇛
󰇜


󰇲
󰇱


󰇟
󰇛
󰇜
󰇛
󰇜

󰇛
󰇜󰇠

󰇛
󰇜



󰇲
󰇱

󰇟
󰇛

󰇜
󰇛
󰇜

󰇛
󰇜󰇠

󰇛
󰇜


󰇲

󰇛

󰇛
󰇜
󰇜
󰇥

󰇟
󰇛

󰇜
󰇛

󰇜

󰇛

󰇜󰇠


󰇦

󰇛

󰇜
󰇛

󰇜
󰇛󰇜

󰇛
󰇜


󰇛

󰇜
󰇛

󰇜
󰇛󰇜

󰇛
󰇜


󰇛

󰇜
󰇛

󰇜
󰇛󰇜

󰇛
󰇜


INTERNATIONAL JOURNAL OF RESEARCH AND SCIENTIFIC INNOVATION (IJRSI)
ISSN No. 2321-2705 | DOI: 10.51244/IJRSI |Volume XII Issue VIII August 2025
Page 816
www.rsisinternational.org
=
󰇛

󰇜
..............(5.5)
Using lemma 4(a) and 4(c) and the monotonically of
󰇛󰇜
󰇛󰇜
with respect to t we have
󰇛

󰇜
󰇛

󰇜
󰇛󰇜

󰇛
󰇜


󰇡
󰇛
󰇜
󰇛
󰇜
󰇛
󰇜
󰇢󰇛󰇜

󰇛󰇜
󰇛
󰇜
󰇛
󰇜


.
Using second mean value theorem of integral we have
󰇛󰇜
󰇛
󰇜
󰇛
󰇜


󰇧


󰇛
󰇜
󰇡

󰇢
󰇡

󰇢
󰇜󰇨
󰇧
󰇛
󰇜
󰇡

󰇢
󰇡

󰇢
󰇜󰇨.
..............(5.6)
For
using lemma 4(b) and 4(c) we have
󰇛

󰇜
󰇛

󰇜
󰇛󰇜

󰇛
󰇜


󰇡
󰇛
󰇜
󰇛
󰇜
󰇛
󰇜
󰇢



󰇛
󰇜
󰇡
󰇛
󰇜

󰇛
󰇜
󰇢

..............(5.7)
from (5.5) (5.6) and (5.7) we get
󰇛

󰇜
󰇛

󰇜

󰇛󰇜
󰇧
󰇛
󰇜
󰇡

󰇢
󰇡

󰇢
󰇜󰇨 
󰇛
󰇜
󰇡
󰇛
󰇜

󰇛
󰇜
󰇢


󰇛

󰇜

󰇛

󰇜

󰇛󰇜
󰇛󰇜
󰇧
󰇡

󰇢
󰇡

󰇢
󰇨
󰇡
󰇛
󰇜

󰇛
󰇜
󰇢

 ..........(5.8)
Again using Lemma we have
󰇛󰇜


󰇛󰇜

󰇛󰇜


󰇛
󰇜


󰇛
󰇜


INTERNATIONAL JOURNAL OF RESEARCH AND SCIENTIFIC INNOVATION (IJRSI)
ISSN No. 2321-2705 | DOI: 10.51244/IJRSI |Volume XII Issue VIII August 2025
Page 817
www.rsisinternational.org

󰇡

󰇢
󰇛
󰇜


󰇡

󰇢
󰇛
󰇜


..............(5.9)
from (5.8) and (5.9) we have
󰇛󰇜
󰇛󰇜

󰇛

󰇜

󰇛

󰇜

󰇛󰇜
󰇛󰇜
󰇡

󰇢
󰇛
󰇜


󰇧
󰇡

󰇢
󰇡

󰇢
󰇨
󰇡
󰇛
󰇜

󰇛
󰇜
󰇢


.
Now we write
in terms of


 term of
,
in view of the monotonicity of v(t) we have
󰇛
󰇜
󰇧
󰇛
󰇜

󰇛
󰇜
󰇨
󰇛
󰇜

󰇛
󰇜
󰇧
󰇛
󰇜

󰇛
󰇜
󰇨󰇧
󰇛
󰇜

󰇛
󰇜
󰇨
therefore we can write
󰇛

󰇜
Again using monotonicity of v(t)

󰇛
󰇜


󰇧
󰇛
󰇜

󰇛
󰇜
󰇨


󰇛
󰇜
󰇧
󰇛
󰇜

󰇛
󰇜
󰇨

󰇛
󰇜
............(5.10)
using the fact
󰇛
󰇜

󰇛
󰇜
is positive and non decreasing , we have
󰇧
󰇛
󰇜

󰇛
󰇜
󰇨

󰇡

󰇢
󰇡

󰇢

󰇡

󰇢
󰇡

󰇢

therefore we can write
󰇛
󰇜
.
So we have
󰇛󰇜

󰇛
󰇜
󰇡
󰇛
󰇜

󰇛
󰇜
󰇢

.
Hence
󰇛
󰇜

󰇛󰇜

󰇡
󰇛
󰇜

󰇛
󰇜
󰇢

INTERNATIONAL JOURNAL OF RESEARCH AND SCIENTIFIC INNOVATION (IJRSI)
ISSN No. 2321-2705 | DOI: 10.51244/IJRSI |Volume XII Issue VIII August 2025
Page 818
www.rsisinternational.org
This completes the proof Theorem 1.
Proof of Theorem 2 We have from theorem 1
󰇛
󰇜

󰇛󰇜

󰇡
󰇛
󰇜

󰇛
󰇜
󰇢

we assume that
󰇛󰇜
󰇛󰇜
is positive and decreasing in t then
󰇛
󰇜

󰇛󰇜
󰇧
󰇡

󰇢

󰇡

󰇢
󰇨


󰇛
󰇜

󰇛󰇜
󰇧
󰇡

󰇢

󰇡

󰇢
󰇨
󰇛
󰇜

󰇛
󰇜

󰇛󰇜
󰇧
󰇡

󰇢

󰇡

󰇢
󰇨󰇡

󰇢
󰇛
󰇜

󰇛󰇜
󰇧
󰇛󰇜󰇡

󰇢
󰇡

󰇢
󰇨󰇡

󰇢.
This completes the proof Theorem 2.
REFERENCES
1. Kim, J. (2021). Degree of Approximation of Function of Class 
󰇛󰇜 by Cesaro Means
of Fourier series. East Asian Math. J. ,Vol. 37. No. 3 pp. 289 293.
2. Leinder, L. (1981). Strong approximation and generalized Zygmund class. Acta Sci. Math. 43,
no. 3-4, 301 309.
3. Moricz, F. (2010) . Enlarged Lipschitz and Zygmund classes of function and Fourier
transformation. East J. Approx. 16. No. 3, 259 271.
4. Moricz, F. & Nemeth(2007) . Generalized Zygmund classes of function and Approximation by
Fourier series . Acta Sci. Math. , no. 3 4, 637 647.
5. Mishra, A., Padhy, B. P., & Mishra, U. (2020). On approximation of signal in the
Generalized Zygmund class using (E, r) (N, qn) mean of conjugate derived Fourier series.
EJPAM , Vol 13 , No. 5, 1325 1336.
6. Pradhan, T., Paikray, S. K., Das, A. A. &dutta, H. (2019). On approximation of Signal in the
generalised Zygmund class via (E,1) (
) summability mean of Conjugate Fourier series.
Proyecciones (Antofagasta. Online ) , Vol 38, n. 5, 981- - 998.
7. Singh, M. V., Mittal, M. L. , & Rhoades, B. E. (2017).Approximation of functions in the
generalized Zygmund class using Hausdorff means. Journal of Inequalities and Applications.
2017:101 DOI 10.1186/s13660-017-1361-8 . pp. 1- 11.
8. Sinha, S .K. & Shrivastava, U. K. (2022). Degree of Approximation of Function of Class
󰇛

󰇜
by
󰇛

󰇜
Mean of Fourier Series. South East Asian J of Mathematics and
Mathematical Science, (18)2, 117 -124.