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ABSTRACT 

This study investigates the numerical solution of the FitzHugh-Nagumo (FHN) equation, a canonical Nonlinear 

Reaction-Diffusion system widely used in Neuroscience and Biophysics using the Method of Lines (MoL). The 

MoL approach, known for its efficiency and flexibility, discretizes spatial variables to transform partial 

differential equations ( PDEs ) into a system of Ordinary Differential Equations (ODEs), which are then 

integrated in time. A fourth-order five-point central difference scheme is employed to approximate spatial 

derivatives, and MATLAB is used to implement the method. To validate the Numerical scheme, the Newell -

Whitehead equation (a special case of the FHN model) is solved, and the results are benchmarked against exact 

solutions. The results exhibit excellent accuracy, with errors remaining in the order of 10−7 to 10−4 across varying 

time steps. Comparative analysis against results from the Galerkin Finite Element Method confirms the superior 

accuracy and computational efficiency of the MoL approach. These findings affirm the reliability and robustness 

of the Method of Lines in solving Nonlinear Reaction-Diffusion systems, suggesting its potential for broader 

application in modeling complex Scientific and Engineering phenomena. 

Keywords: Method of Lines, FitzHugh-Nagumo Equation, Reaction-Diffusion, Non-linear PDEs, Newell-

Whitehead Equation 

INTRODUCTION 

Our physical world is most generally described with respect to three-dimensional space and time in Sciences and 

Engineering, abbreviated as Space-time (Samir, William & Graham, 2009). Partial differential equations (PDEs) 

is one of the tools used to demonstrate how some quantities vary with position and time Tsega (2022). One of 

such equations is the heat equation which is used to describe the variation of temperature in a body. The 

complexity of many real situations makes it difficult to obtain analytical solutions, hence, numerical methods 

Tsega (2022), Mazumder (2016), Dawson, D and Dupont (1991), Dalabev and Hasanova (2023) ,Kolar-Pozun 

etal, (2024). Several approximate methods have been investigated to solve time dependent PDEs, Deghan and 

Kazem (2017). The main subject in numerical analysis is to study these methods in terms of their convergence, 

stability, and order of accuracy. 

One of the ways to solve a time-dependent PDEs is the application of Method of Lines (MoL). MoL has formed 

a broad interest in Science and Engineering. It discretizes the spatial dimension by using techniques such as 

finite difference, finite element and finite volume, spectral or meshless methods. It serves as a general procedure 

for the solution of partial differential equations (PDEs) (Samir, William & Graham 2009). The use of MoL yields 

a system of first order differential equations with initial value Deghan and Kazem (2017). This method could be 

described as a semi analytical procedure and a general way of viewing a partial differential equation as a system 

of Ordinary Differential Equations (ODEs) Zafarullah (1970). Sadiku and Obiozor (2000) described MoL as a 
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special finite difference method and noted it to be more effective in terms of accuracy and computational time 

than the standard finite difference method. Okafor et al., (2025) did a comparative study of stencil-based Method 

of Lines to solve Non-linear PDEs. For the PDEs to which MOL is applied, the method typically proves to be 

quite efficient. 

Application of MoL cuts across various problems in general Science, Biomedical science and Engineering 

(White and Subramanian, 2010). It had been applied for the solution of extended Boussinesesq equation(Hamdi, 

et al., 2005), one dimensional wave equation subject to an integral conservation condition (Shakeri and Dhghan, 

2008), the conservation laws problem (Hyman, 1979), among others. 

Consider this family of equation 

𝜕𝑢

𝜕𝑡
= 𝐷

𝜕2𝑢

𝜕𝑥2
           (1) 

Where; 

 u represents the dependent variable (on x and t), 

 t represents the independent variable, 

  x represents an independent variable and one dimension of the three-dimensional space, and D represents a real 

positive constant ( diffusivity ). 

For a function U(x,y,z,t) of three spatial variables (x,y,z) and the time variable t, with an initial condition, the heat 

equation is given as: 

𝜕𝑢

𝜕𝑡
= 𝐷 (

𝜕2𝑈

𝜕𝑥2
+
𝜕2𝑈

𝜕𝑦2
+
𝜕2𝑈

𝜕𝑧2
), 𝑡 > 0, (𝑥, 𝑦, 𝑧) ∈ Ω      (2) 

U(x,y,z,0) = f(x,y,z) 

Where Ω ⊂ R3 is an open bounded domain with smooth boundary ∂Ω. 

Reaction-diffusion equations are a type of PDEs that model how different substances diffuse through a medium 

and interact with each other. These equations are of high importance for modeling various natural and engineered 

processes, including chemical reactions, biological pattern formation, and environmental dynamics. The general 

form of a reaction-diffusion equation for a single substance u(x,t) in one dimension is: 

𝜕𝑢

𝜕𝑡
= 𝐷

𝜕2𝑢

𝜕𝑥2
+ 𝑅(𝑢)          (3) 

where: 

𝜕𝑢

𝜕𝑡
  represents the time rate of change of u 

D is the diffusion coefficient that quantifies the rate of diffusion,  
𝜕2𝑢

𝜕𝑥2
  is the second spatial derivative, modeling 

the diffusion process, 

R(u) is a nonlinear term representing the reaction kinetics. 

Reaction-diffusion equation has its applications in numerous scientific fields. In Biology, it models pattern 

formation, population dynamics, and tumor growth. In Chemistry, is describes auto-catalytic reactions and 

chemical wave propagation. In Physics, it is used to analyze phase transitions and heat conduction in reactive 

materials. In Ecology, they help study species distribution, habitat interactions, and environmental changes. 

Additionally, reaction-diffusion processes are employed in developing sensors and devices for signal processing 

(Murray, 2002; Murray, 2003; Nagumo, Arimoto andYoshizawa,1962; Meinhardt, 1982) 
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Analytical solutions for reaction-diffusion equations are often limited to specific cases involving linear reactions 

or symmetric boundary conditions. For more complex, real-world problems, numerical methods are 

indispensable. Common numerical approaches include the Finite Difference Method (FDM), Finite Element 

Method (FEM), and the Method of Lines (MOL). 

Reaction-diffusion equations are essential for understanding processes involving the combined effects of 

diffusion and reaction. Although analytical solutions are rare, numerical techniques, particularly the Method of 

Lines, are effective for investigating these complex systems. The study of reaction-diffusion equations remains 

a vibrant research field with far-reaching implications across both natural and applied sciences. The 

FitzHughNagumo (FHN) equations are a well-known example of nonlinear reaction-diffusion systems. 

Originally developed for Neuroscience in the 1960s, Richard FitzHugh introduced the model in 1961 as a 

simplified version of the complex Hodgkin-Huxley model. The model was further refined in 1962 by Fitzhugh 

(1961) and Nagumo, Arimoto andYoshizawa,(1962).  

It has become a key tool for understanding the behavior of excitable neuron cells. Beyond its applications in 

Neuroscience, the FHN equations have been used in cardiac physiology, cell division, population dynamics, 

electronics, and the study of complex phenomena, such as traveling waves and pattern formation in coupled 

systems. 

Hariharan and Kannan (2010) developed the Haar wavelet method to solve the FitzHugh-Nagumo equation. Ali 

et al., (2020) solved a specific FitzHugh-Nagumo equation using the Galerkin Finite Element Method and 

demonstrated the method’s accuracy through error analysis. Cevikel et al, (2022) introduced the tanh-coth 

method for solving nonlinear space-time conformable partial differential equations, obtaining exact and traveling 

wave solutions for the FitzHugh-Nagumo equation. Zhou et al., (2023) applied the Chebyshev Fourth Order 

Runge-Kutta scheme with Neumann boundary conditions to the FitzHugh-Nagumo equation to simulate spiral 

waves over a long period. 

METHODS 

Algorithm Of Method Of Lines 

To evaluate the numerical solution of nonlinear equations using the Method of Lines, the following steps are 

considered; 

1. Discretize the spatial derivatives in PDE 

2. Formulate the approximate system of ODEs 

3. Apply any integration algorithm for the initial value of ODE to compute an approximate numerical solution 

to the PDE. 

Consider the partial differential equation (PDE) with the initial condition is 

𝑈𝑡 = 𝑈𝑥𝑥    𝑥 ∈ (𝑥0],                  𝑡 > 0    (3)   

    

𝑈(𝑥, 0)=𝑓(𝑥),    𝑥 ∈ (𝑥0, 𝐿]      (4) 

Evaluating the diffusion operator 𝑈𝑥𝑥  using a five-point central finite difference gives: 

12ℎ2𝑈𝑖
′= −𝑈𝑖−2 + 16𝑈𝑖−1 − 30𝑈𝑖 + 16𝑈𝑖+1 − 𝑈𝑖+2 + 𝑂(ℎ

4),    𝑖 = 1,2,… ,𝑀 − 1    (5) 

with the initial condition: 

𝑈𝑖(0)=𝑓(𝑥𝑖)               (6) 
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𝑤ℎ𝑒𝑟𝑒  ℎ= 
𝐿−𝑥0

𝑀
 

Equation (5) can be written in matrix form as: 

12ℎ2𝑈= 𝐴𝑈,            U(0) = [𝑓(0) , 𝑓(𝑥𝑖),… , 𝑓(𝑥𝑀)]
𝑇                   (7)          

Where A, for periodic boundary condition is 

𝑈(𝑥0 , 𝑡) = 𝑈(𝐿 , 𝑡)  and 𝑈𝑥(𝑥0 , 𝑡) = 𝑈𝑥(𝐿 , 𝑡)  

𝑈0 = 𝑈𝑀 ,   𝑈𝑥|0 = 𝑈𝑥|𝑀 , 

From Equation (5), for i = M + 2, we can write: 

12ℎ2𝑈𝑀+2
′  = −𝑈𝑀+16𝑈𝑀+1 − 30𝑈𝑀+2 +16𝑈𝑀+3 − 𝑈𝑀+4                             (8) 

Also 

Taking i = 0, we have: 

Take 𝑖 = 0 

12ℎ2𝑈0
′ = −𝑈−2 + 16𝑈−1 − 30𝑈0 + 16𝑈1 − 𝑈2 +𝑂(ℎ4)      (9) 

Take 𝑈−2 = 𝑈0  − ℎ𝑈𝑥|0 + 𝑂(ℎ4) 

12ℎ2𝑈0
′ = 16𝑈−1 − 31𝑈0 + 16𝑈1 − 𝑈2 − ℎ𝑈𝑥|0 +𝑂(ℎ

4)      (10) 

For  𝑈𝑥|0 = 𝑈𝑥|𝑀, 

 we have; 

12ℎ2𝑈0
′ = 16𝑈−1 − 31𝑈0 + 16𝑈1 − 𝑈2 − ℎ𝑈𝑥|𝑀 +𝑂(ℎ4)  (11) 

Let 𝑈𝑥|𝑀 = 
 (𝑈𝑀 − 𝑈𝑀−1)

ℎ
⁄  +O(ℎ) 

12ℎ2𝑈0
′ = 16𝑈−1 − 31𝑈0 + 16𝑈1 − 𝑈2 + (𝑈𝑀 − 𝑈𝑀−1) +𝑂(ℎ

4) (12) 

But 𝑈0 = 𝑈𝑀, hence we have 

12ℎ2𝑈0
′ = 16𝑈−1 − 30𝑈0 + 16𝑈1 − 𝑈2 − 𝑈𝑀−1 +𝑂(ℎ4)  (13) 

Now, matrix A for the periodic condition according to equations (8) and (9), is obtained as: 

A=  

(

 
 

−5/2 4/3 −1/12 0 0
4/3 −5/2 4/3 −1/12 0
−1/12 4/3 −5/2 4/3 −1/12
0 −1/12 4/3 −5/2 4/3
0 0 −1/12 4/3 −5/2 )

 
 

𝑀𝑋𝑀

      (14) 

  

 

Direct Method of Lines for Solving Partial Differential Equations 
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Consider the three-dimensional heat equation satisfying the initial condition 

𝑈𝑡 = 𝑈𝑥𝑥 + 𝑈𝑦𝑦 + 𝑈𝑧𝑧,𝑥 ∈ (𝑥0, 𝐿𝑥] , 𝑦 ∈ (𝑦0, 𝐿𝑦], 𝑧 ∈ (𝑧0, 𝐿𝑧], t> 0,    (15)  

𝑈(𝑥, 𝑦, 𝑧, 0) = 𝑓(𝑥, 𝑦, 𝑧), 𝑥 ∈ (𝑥0, 𝐿𝑥] , 𝑦 ∈ (𝑦0, 𝐿𝑦], 𝑧 ∈ (𝑧0, 𝐿𝑧] 

Evaluating the diffusion operators  𝑈𝑥𝑥 , 𝑈𝑦𝑦 and 𝑈𝑧𝑧 using five point finite difference, gives 

𝑈𝑖,𝑗,𝑘
′  = 

1

12ℎ2
 (−𝑈𝑖−2,𝑗,𝑘 + 16𝑈𝑖−1,𝑗,𝑘 + 16𝑈𝑖+1,𝑗,𝑘 − 𝑈𝑖+2,𝑗,𝑘)  + 

1

12ℎ2
 (−𝑈𝑖,𝑗−2,𝑘 + 16𝑈𝑖,𝑗−1,𝑘 + 16𝑈𝑖,𝑗+1,𝑘 −

𝑈𝑖,𝑗+2,𝑘) +
1

12ℎ2
 (−𝑈𝑖,𝑗,𝑘−2 + 16𝑈𝑖,𝑗,𝑘−1 + 16𝑈𝑖,𝑗,𝑘+1 − 𝑈𝑖,𝑗,𝑘+2) - 30(

1

12ℎ𝑥
+ 

1

12ℎ𝑦
+ 

1

12ℎ𝑧
) 𝑈𝑖,𝑗,𝑘, 

𝑈𝑖,𝑗,𝑘(0) = 𝑓𝑖,𝑗,𝑘 = 𝑓(𝑥𝑖 , 𝑦𝑗 , 𝑧𝑘)       (16) 

Where ℎ𝑥 =  (𝐿𝑥 − 𝑥0) 𝑀𝑥⁄  , ℎ𝑦 =  (𝐿𝑦 − 𝑦0) 𝑀𝑦⁄  , ℎ𝑧 =  (𝐿𝑧 − 𝑧0) 𝑀𝑧⁄ . This system of ODE has solution in 

the form 

𝑈(𝑡) = 𝑒𝐴3𝑡𝑈(0)         (17) 

Where, U(0) and 𝐴3 will be obtained for some boundary conditions 

Application and Results 

Consider the FitzHugh-Nagumo equation: 

𝜕𝑢

𝜕𝑡
 = 
 𝜕2𝑢

𝜕𝑥2
 + 𝑢(𝑢 − 𝜆)(1 − 𝜆),  (𝑥, 𝑡) ∈ [𝐴, 𝐵]  × [0, 𝑇]       (18) 

λ is an arbitrary constant and 0 ≤ λ ≤ 1. 

When λ = 1, the equation reduces to the famous Newell-Whitehead equation 

𝜕𝑢

𝜕𝑡
 = 
 𝜕2𝑢

𝜕𝑥2
 + 𝑢 − 𝑢3,    𝑡 ∈ [0, 𝑇]     (18a) 

With Boundary conditions 

𝜕𝑢(𝑥,𝑡)

𝜕𝑡
│𝑥=𝐴 = Г1(𝑡),  𝑡 ∈ [0, 𝑇]      (19) 

𝜕𝑢(𝑥,𝑡)

𝜕𝑡
│𝑥=𝐵  = Г2(𝑡),  𝑡 ∈ [0, 𝑇] 

Г1(𝑡) = 
1

√2
4 csc ℎ2 (−

1

√2.2
+
𝑡

4
+ 𝐶) 

Г2(𝑡) = 
1

√2
4 csc ℎ2 (−

1

√2.2
+
𝑡

4
+ 𝐶) 

The boundary conditions are non- homogeneous Neumann boundary conditions, 

with the initial conditions: 

𝛬(𝑥) = 𝑢(𝑥, 𝑡)│𝑡=0   𝑡 ∈ [0, 𝑇] 

𝛬(𝑥) = 
1

2
[1 − cot ℎ (

𝑥

√2.2
+ 𝐶)]         (20) 
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The Exact solution of Equation (18) is: 

𝑢(𝑥, 𝑡)=  
1

2
[1 − cot ℎ (

𝑥

√2.2
+
(2𝜆−1)

4
𝑡 + 𝐶)]        (21)  

For Numerical computation, we consider 

𝐶= 
𝜋

4
   and   𝜆 = 1 

Applying the MoL Algorithm discussed in the previous section to equation (18) and solve using MATLAB 

Table 1: Numerical Solution obtained with the Method of Lines, exact solution and error obtained at various 

time, t 

X t = 0.05 

Numerical 

Exact Error t = 0.1 

Numerical 

Exact Error t = 0.3 

Numerical 

Exact Error 

-1.0 9.25E-06 9.25E-

06 

0.00000 9.02E-06 9.02E-

06 

0.00000 8.16E-06 8.16E-

06 

0.00000 

-0.8 7.76E-06 7.57E-

06 

1.92E-

07 

7.41E-06 7.38E-

06 

2.92E-

08 

6.29E-06 6.68E-

06 

3.94E-

07 

-0.6 6.35E-06 6.20E-

06 

1.57E-

07 

6.07E-06 6.06E-

06 

2.95E-

08 

5.11E-06 5.47E-

06 

3.55E-

07 

-0.4 5.20E-06 5.07E-

06 

1.28E-

07 

4.98E-06 4.95E-

06 

2.65E-

08 

4.16E-06 4.48E-

06 

3.21E-

07 

-0.2 4.26E-06 4.15E-

06 

1.05E-

07 

4.09E-06 4.07E-

06 

1.79E-

08 

3.41E-06 3.69E-

06 

2.85E-

07 

0.0 3.49E-06 3.40E-

06 

8.61E-

08 

3.34E-06 3.32E-

06 

1.78E-

08 

2.79E-06 2.98E-

06 

2.11E-

07 

0.2 2.86E-06 2.78E-

06 

7.05E-

08 

2.73E-06 2.72E-

06 

1.47E-

08 

2.28E-06 2.46E-

06 

1.73E-

07 

0.4 2.32E-06 2.28E-

06 

5.77E-

08 

2.21E-06 2.21E-

06 

9.42E-

09 

1.85E-06 1.98E-

06 

1.41E-

07 

0.6 1.91E-06 1.87E-

06 

4.73E-

08 

1.83E-06 1.83E-

06 

5.63E-

09 

1.54E-06 1.65E-

06 

1.12E-

07 

0.8 1.57E-06 1.53E-

06 

3.87E-

08 

1.50E-06 1.49E-

06 

7.16E-

09 

1.27E-06 1.35E-

06 

8.29E-

08 

1.0 1.25E-06 1.25E-

06 

0.00000 1.22E-06 1.22E-

06 

0.00000 1.10E-06 1.10E-

06 

0.00000 
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Graphical Illustration of the Numerical Solution, Exact and the Error obtained 

 

   

 

 

Figure 1: Numerical solution vs exact at t=0.05 

 

Figure 2: Numerical vs Exact at t=0.1 

 

Figure 3: Numerical vs Exact solution at t=0.3 

Table 2: Comparing the Absolute Error of MoL with Ali et al. [20] 

X t = 0.05 MoL Ali et al. t = 0.1MoL Ali et al. t = 0.3MoL Ali et al. 

-1.0 0.00000 1.14E-02 0.00000 2.51E-02 0.00000 9.02E-02 

-0.8 1.92E-07 8.85E-04 2.96E-08 2.14E-02 3.81E-07 8.17E-02 

-0.6 1.57E-07 5.68E-04 3.16E-08 1.51E-02 3.77E-07 6.56E-02 
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-0.4 1.28E-07 3.55E-04 2.70E-08 9.11E-03 3.21E-07 4.91E-02 

-0.2 1.05E-07 2.27E-04 2.17E-08 6.41E-03 2.60E-07 3.56E-02 

0.0 8.61E-08 1.49E-04 1.78E-08 4.19E-03 2.13E-07 2.39E-02 

0.2 7.05E-08 1.01E-04 1.45E-08 2.80E-03 1.74E-07 1.77E-02 

0.4 5.77E-08 7.01E-05 1.20E-08 1.92E-03 1.43E-07 1.25E-02 

0.6 4.73E-08 5.01E-05 9.63E-09 1.36E-03 1.15E-07 9.11E-03 

0.8 3.87E-08 3.74E-05 6.63E-09 9.10E-04 8.31E-08 7.14E-04 

1.0 0.00000 3.22E-05 0.00000 9.12E-05 0.00000 6.48E-04 

Graphical Illustration comparing Absolute errors of MoL with Ali etal[20] 

 

Figure 4: Absolute errors compared at t=0.05 

 

Figure 5: Absolute errors compared at t=0.1 
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Figure 6: Absolute errors compared at t=0.3 

Interpretation of Results 

In this paper, FitzHugh-Nagumo equation, a type of reaction-diffusion equation is presented. The numerical 

solutions obtained using Method of Lines were compared with the exact solution in Table 1 and also displayed 

graphically in Figures 1-3.  Both the table and graphs provide results for spatial points X at various time levels 

(t = 0.05, t = 0.1, and t = 0.3). The error is calculated as the difference between the numerical and exact solutions. 

Error values are very low, indicating high accuracy for most points: At t = 0.05, errors are generally below 10−7, 

demonstrating strong alignment with the exact solution. At t = 0.3, errors increase slightly but remain small, 

showing stability in the MOL solution even over longer time frames.  

Comparison of the numerical solutions of the Galerkin Finite Element Method by Ali etal [20] with that of the 

Method of Lines scheme were presented in Table 2 and graphically displayed in Figures 4 through 6. MoL 

demonstrates strong accuracy with minimal deviation from the exact solution, evidenced by near-zero errors in 

most cases compared to that of Ali [20]. Considering the low error values and consistent results across time 

levels, the MOL scheme appears more efficient and potentially well-suited for more complex nonlinear 

problems. This comparison highlights the reliability of the Method of Lines (MOL) in solving nonlinear 

diffusion-reaction equations, especially the Fitzugh -Nagumo equation. 

CONCLUSION 

This paper demonstrates the effectiveness of the Method of Lines (MoL) in solving FitzHugh-Nagumo equation. 

We solved a well renowned Newell-Whitehead equation to verify consistency of the scheme. Solutions obtained 

from the scheme were compared to analytical and existing numerical methods to demonstrate the advantages 

and limitations of each approach. This research validates MoL’s capability in handling stability and convergence 

challenges, making it a versatile tool for solving complex partial differential equations in Science and 

Engineering. 
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