
INTERNATIONAL JOURNAL OF RESEARCH AND SCIENTIFIC INNOVATION (IJRSI)

ISSN No. 2321-2705 | DOI: 10.51244/IJRSI |Volume XII Issue VIII August 2025

Page 917 www.rsisinternational.org

a

Comparative Performance Analysis of Some Priority Queue Variants

in Dijkstra’s Algorithm

Idowu, Abel Iyanda1 Olabiyisi, Stephen Olatunde.2 Alo, Oluwaseun Olubisi 3 Adeleke, Israel Adewale4

Jokotoye, Ayoade Alade5 and Omotade, Adedotun Lawrence6

1,2,3,6 Department of Computer Science, Ladoke Akintola University of Technology, Ogbomoso, Oyo

State, Nigeria.

4 Department of Data Science, Informatics and Computer Science, Emmanuel Alayande University of

Education, Oyo. Oyo State, Nigeria

5 Department of Computer Science, Bowen University, Iwo. Osun State, Nigeria.

DOI: https://doi.org/10.51244/IJRSI.2025.120800078

Received: 06 Aug 2025; Accepted: 13 Aug 2025; Published: 06 September 2025

ABSTRACT

Efficient shortest-path computation in weighted graphs is essential in domains like networking and logistics.

Dijkstra’s algorithm depends heavily on the choice of priority queue, and while theoretical complexities are

well-documented, their real-world performance varies. This study compares three priority queue

implementations-Binary Heap, Fibonacci Heap, and Binomial Heap- within Dijkstra’s algorithm using road

network data from Zenodo (https://doi.org/10.5281/zenodo.1290209). The dataset was preprocessed,

normalized, and converted into a usable format using MATLAB (R2024b). Theoretical time complexities for

core operations—insert, decrease-key, and extract-min—were analyzed. Experiments conducted on

synthetically generated graphs showed Binary Heap achieved the fastest execution time (0.00126s) and highest

throughput (3313 edges/sec), outperforming Fibonacci and Binomial Heaps. Results indicate that Binary Heap

is the optimal choice for execution speed and throughput, especially for large or dense graphs. The findings

provide practical guidance for selecting priority queues in real-world shortest-path applications and contribute

to the empirical evaluation of data structures in algorithm design.

Keywords: Shortest path, Dijkstra algorithm, Priority queue, Binary heap, Binomial Heap and Fibonacci heap.

INTRODUCTION

The aspect of algorithms is an integral part of the theoretical computer science that has been in existence since

the early days of the information age. It gave birth to many brilliant ideas used in solving fundamental

computational problems. Therefore, algorithms are the solution to computational problems. They define

methods that are used in solving problems that require the formulation of an algorithm for the solution.

Dijkstra’s algorithm (DA) is an efficient, exact method for finding the shortest paths between vertices in edge-

and arc-weighted graphs. The Shortest Path Problem (SPP) approach involves finding the shortest path

between two vertices (or nodes) in a graph such as sum of weight of its constituent edges when minimized.

The shortest path problem is represented by a graph, G = (V - E), where V is the set of vertices or nodes and E

is the set of edges or arcs. Sometimes, the graph is known as a network. It is particularly useful in

transportation problems when we want to determine the shortest (or fastest) route between two geographic

locations on a road network (Rillet, 2006). It is also applicable in areas such as telecommunication, social

network analysis, arbitrage, and currency exchange (Lewis, 2023).

The algorithm exists in many variants such as Fibonacci heap, List, Indexed priority queue, Binary heap, D-

way heap, Binomial heap and Array.

https://rsisinternational.org/journals/ijrsi
https://rsisinternational.org/journals/ijrsi
http://www.rsisinternational.org/
https://doi.org/10.51244/IJRSI.2025.120800078
https://doi.org/10.5281/zenodo.1290209

INTERNATIONAL JOURNAL OF RESEARCH AND SCIENTIFIC INNOVATION (IJRSI)

ISSN No. 2321-2705 | DOI: 10.51244/IJRSI |Volume XII Issue VIII August 2025

Page 918 www.rsisinternational.org

a

Priority queue variants in Dijkstra’s algorithms

Priority queue variants in Dijkstra’s algorithm is known as Heaps. The heap is one of most efficient

implementation of an abstract data type called a priority queue. A priority queue is a fundamental data

structure that allows efficient management of elements based on their priority. Priority queue variants in

Dijkstra’s algorithm used in this project include: Binary heap. Binomial heap and Fibonacci heap.

Binary heap: A binary heap is a complete binary tree which is used to stored data efficiently either to get the

Max or Min element based on its structure. A binary heap is either Min heap or Max heap. For example, in

Min. Binary heap, the key at the root must be minimum among all keys present in Binary heap. The same

property must be recursively true for all nodes in binary tree. Max. Binary heap is like Min. heap. (Srivastava,

2020).

Binomial heap(BH): is an extension of binary heap that provides faster union of merge operations provided by

binary heap. Binomial heap is a collection of binomial trees. A binomial tree of order has one node. A

binomial tree of order K can be constructed by taking two binomial trees of order K-1 and making one the

leftmost child of the other.

Fibonacci Heap: To speed up Dijkstra Algorithm for the single-source shortest path problem with nonnegative

length edges, Freedman, and Tarjan in 1987 developed the Fibonacci heap.

The Fibonacci heap (FH) has similar properties to the binomial heap, such that every binomial heap is a

Fibonacci heap, but not the other way around. The Fibonacci heap can contain multiple trees consisting of

single nodes, while the binomial heap always consists of trees with 2n nodes, where each tree has a different n

value.

Algorithm Techniques

Dijkstra algorithm: to find the shortest path between a. and b. It picks the unvisited vertex with the lowest

distance, calculates the distance through it to each unvisited neighbor, and updates the neighbor's distance if

smaller. Mark visited (set to red) when done with neighbors shown in Figure1.1 Usually used with priority

queue or heap for optimization.

The technique of finding shortest path (Fredman, 1987).

In the Pursuit to contribute to knowledge, this study aims to evaluate and compare three priority queue variant

to classify them base on their predefined categories with the objectives to:

i) implement Dijkstra’s algorithm with each priority queue variant (Binary Heap, Fibonacci Heap, and

Binomial Heap);

ii) design experiments to measure runtime performance of each priority queue variant on different graph

sizes;

iii) evaluate and compare the performance (execution time and throughput) of each variant under

varying graph sizes.

https://rsisinternational.org/journals/ijrsi
https://rsisinternational.org/journals/ijrsi
http://www.rsisinternational.org/

INTERNATIONAL JOURNAL OF RESEARCH AND SCIENTIFIC INNOVATION (IJRSI)

ISSN No. 2321-2705 | DOI: 10.51244/IJRSI |Volume XII Issue VIII August 2025

Page 919 www.rsisinternational.org

a

RELATED WORK

Santoso (2010) analyzed the performance of Dijkstra, using A* and Ant algorithm for finding optimal path, A*

and Ant algorithm when finding optimal path of certain route. The result shows that Ant algorithm is not

suitable for the path finding algorithm because it is less stable and requires a long time to do a search while

Dijkstra and A* algorithm provide optimal results in a quick time.

Buyue (2016) presented the Performance Evaluation (PE) of A* Algorithms, the used of A* algorithms, which

over the years has had a lot of variations, the thesis find how Dijkstra algorithm, IDA*, Theta* and HPA*

compare against A* based on the variable’s computation time, number of opened nodes, path length as well as

number of path nodes. A* and way they specifically improve A* an experiment was set up where the

algorithms were implemented and evaluated over several maps with varying attributes of the result of the

tested algorithms for computation time, number of opened nodes, path length and number of path nodes over

several different maps as well as the average performance overall maps.

Enech and Arinze (2017) Carried out Comparative Analysis and Implementation of Dijkstra shortest path

algorithm for emergency response and logistic planning Dijkstra algorithm implemented with double bucket

dynamic data structure is selected for implementing the proposed route planning system as past research

efforts has proven that it is the fastest with run-time improvements from 0(m+n/logc) to 0(m) respectively.

WANG (2018) compared three Algorithms in shortest path issue, aiming to find the shortest path between the

two nodes in a network; the paper introduces three basic algorithms and compares them theoretically by

analyzing the time and space complexity. Then the paper discusses their performance and summarizes the best

application range.

Samah. (2020) Conducted Comparative Analysis between Dijkstra and Bellman Ford Algorithm in shortest

paths optimization. In that article Dijkstra algorithm and Bellman Ford Algorithm are used to make a

comparison between them based on complexity and performance in terms of shortest path optimization. The

result show that Dijkstra algorithm is better than the Bellman inter of execution time and more efficient for

solving shortest path issue but the algorithm of Dijkstra work with non-negative edge weight.

Yen and Bhandari (2023) proposed Algorithms for variants of the single-source single-target shortest path

problem; Yen’s algorithm is used to find the k shortest s-t-paths, where k is a user-defined parameter. The

methods of Bhandari are used to produce a pair of shortest s-t-paths that are either edge-disjoint and/or vertex-

disjoint.

Despite significant advancement in performance evaluation of Dijkstra algorithm, several research gaps

persist. The subjective nature of Dijkstra definition across different priority queue variants and operations

poses challenges leading to inconsistencies in selecting an appropriate priority queue for specific real-world

applications of Dijkstra’s algorithm. Furthermore, variability in dataset quality and techniques introduces noise

and biases that complicate running time of an algorithm changes. Many existing studies rely on limited and

road network graph datasets, which do not adequately represent the full spectrum of Dijkstra and finds an

optimal path but becomes inefficient for large-scale problems. However, utilizing road network graph datasets

as a test bed and implemented in a MATLAB (R2024b) environment by selecting an appropriate priority queue

such as; Fibonacci heap, Binary heap and Binomial heap for specific real-word applications of Dijkstra

algorithm by bridging the gap between theoretical efficiency and practical performance, the study aim to

revealed the most efficient variant of Dijkstra’s algorithm to be adopted when solving optimization problem.

METHODOLOGY

In the process of comparing of some priority queue variants in Dijkstra algorithms and evaluate their

performance, the study involved. Data collection, Data pre-processing, Priority queue implementation,

Development of platform and Evaluation of priority queue variants

https://rsisinternational.org/journals/ijrsi
https://rsisinternational.org/journals/ijrsi
http://www.rsisinternational.org/

INTERNATIONAL JOURNAL OF RESEARCH AND SCIENTIFIC INNOVATION (IJRSI)

ISSN No. 2321-2705 | DOI: 10.51244/IJRSI |Volume XII Issue VIII August 2025

Page 920 www.rsisinternational.org

a

i). Data Collection:The road network graph dataset utilized in this research was obtained from Zenodo

https://doi.org/10.5281/zenodo.1290209 (dataset). It consists the Czech Republic (CZE) and Entire Portuguese

(PT) road network graph with total nodes (intersections): 1,285,250 (CZE: 1,043,139 + PT: 242,111) and total

edges (roads): 3,254,122 (CZE: 2,673,011 + PT: 581,111). 345 MB. While the PT consists of

road networks from Lisbon, Porto, and entire Portuguese road network. Lisbon Nodes (intersections): 22,107

Edges (roads): 53,811 2.5 MB. Porto Nodes (intersections): 13,444, Edges (roads): 32,313, 1.5 MB.

Portuguese Road Network: Nodes (intersections): 242,111 Edges (roads): 581,111, 25 MB data generated was

first subjected to data cleaning to remove irrelevant, noisy or incomplete records and ensured to contain

numeric value and non-negative that could be negatively impact the algorithm’s performance. The data was

also mapped to represent the edges for Dijkstra algorithm particularly in cases where road network are

weighted by the segments in meters, length of the road making them suitable for shortest path calculation.

Finally, the cleaned and formatted data was converted into data frames making it easier to manipulate,

analyzed and feed into the Dijkstra algorithms.

ii.) Data Pre-processing: Data pre-processing was a critical step in preparing for priority queue, ensuring it was

structured and ready for algorithm and testing. Data was converting the dataset into a data frame was a pivotal

step in the data pre-processing pipeline, enabling efficient organization and manipulation of the data. A data

frame is a data structure constructed with row and columns, similar to a database or Excel Spreadsheet, ideal

for handling large and multidimensional datasets. Table 1 Summarizes some samples edges in the

preprocessed Zenodo dataset. Figure 1 and Figure 2 display the preprocessed dataset in visualization form.

Table 1: Dataset composition table

Source Target Weight

616 111 55

523 80 68

93 246 44

912 888 1

282 932 63

667 153 65

300 294 6

326 282 20

376 51 51

394 610 63

915 74 94

379 907 80

959 521 17

601 440 64

122 464 21

https://rsisinternational.org/journals/ijrsi
https://rsisinternational.org/journals/ijrsi
http://www.rsisinternational.org/
https://doi.org/10.5281/zenodo.1290209

INTERNATIONAL JOURNAL OF RESEARCH AND SCIENTIFIC INNOVATION (IJRSI)

ISSN No. 2321-2705 | DOI: 10.51244/IJRSI |Volume XII Issue VIII August 2025

Page 921 www.rsisinternational.org

a

946 776 61

438 494 9

742 403 62

783 994 67

 Figure 1 Dataset Visualization without zoom

Figure 2: Dataset Visualization after zooming

To adopt the dataset for this study, several preprocessing steps were performed:

Column Selection: Only the id1, id2, and dist columns were retained and transformed to source and destination

column respectively. These columns were mapped to represent the Source, Target, and Weight of the edges for

Dijkstra’s algorithm as illustrated in Figure 1 above.

Data Cleaning The data was checked for inconsistencies and ensured to contain only numeric values.

https://rsisinternational.org/journals/ijrsi
https://rsisinternational.org/journals/ijrsi
http://www.rsisinternational.org/

INTERNATIONAL JOURNAL OF RESEARCH AND SCIENTIFIC INNOVATION (IJRSI)

ISSN No. 2321-2705 | DOI: 10.51244/IJRSI |Volume XII Issue VIII August 2025

Page 922 www.rsisinternational.org

a

Sub-setting: A specific subset of the data (e.g., Lisbon or Porto) was selected to maintain computational

feasibility while ensuring a realistic representation of road network complexity.

Validation: The graph’s structure was verified as directed and weighted, which aligns with the requirements of

Dijkstra’s algorithm. The preprocessing and adaptation steps for this research were performed independently to

align with the study objectives.

iii). Priority queue implementation: Implementing Dijkstra’s algorithm with each priority queue variant and

evaluating performance of Dijkstra algorithm involved a structured approach that integrated data pre-

processing, algorithms implementation, development of a platform and evaluation. The process began with

dataset preparation, which include data selection, data cleaning, normalization and validation the graph

structure was verified as directed and weighted which aligns with the requirement of Dijkstra algorithm.The

three priority queue variants of Dijkstra algorithms implemented using MATLAB programming Language

(MATLAB R2024b). The experiment performed on the intel® core™ i5-8365u with windows 11 pro version

23Hz, 64 bits operating system, CPU@ 1.60GHZ 1.90GHz Central Processing Unit (CPU), 16.0GB Random

Access Memory (RAM) and 500GB hard disk drive. During the implementation different Dijkstra algorithms

applied using the same population size on the Zenodo dataset.

iv.) Development of a platform: A platform for experiments to measure execution time and throughput on

synthetically generated graphs of varying sizes was developed using MATLAB (R2024b) programming

Language. When the file was executed, the Graphical User Interface (GUI) window showed up as the file

name. The quantity of data related to shortest path that need to be determined were input as source and target

nodes. The Interface was made explicit with the help of some created button such as Execution time,

Throughput, Graph visualization, User CSV file, Source node, target node, Result, and Run Algorithm and

select Dataset buttons to input data for source node and target node, the algorithm to be used and table to

display results and summary result.

v.) Evaluation of Priority queue variants: Comparative analysis by performance metrics of the obtained

experimental result carried out for the purpose of evaluating the performances of each metric to the success of

the selected priority queue variants in Dijkstra algorithm and validation of most important metric.

RESULTS AND DISCUSSIONS

A comparative result with three priority queue variants of Dijkstra among binary heap, Fibonacci heap and

binomial heap using Portuguese Road network graphs for between centrality algorithm dataset were analyzed

and reported. The metrics used to compare the algorithms are execution time and throughput showed in figure

3 below.

Figure 3 Application GUI and result after running for Source Node: 750 and Target Node 790

https://rsisinternational.org/journals/ijrsi
https://rsisinternational.org/journals/ijrsi
http://www.rsisinternational.org/

INTERNATIONAL JOURNAL OF RESEARCH AND SCIENTIFIC INNOVATION (IJRSI)

ISSN No. 2321-2705 | DOI: 10.51244/IJRSI |Volume XII Issue VIII August 2025

Page 923 www.rsisinternational.org

a

In Table 1, it was shown that, Fibonacci heap has the longest execution time (0.0459) with lower throughput

(21.7709), Binomial heap has longer execution time (0,0243) and throughput (41.1909), while Binary heap has

shortest execution time (0.0006) with higher throughput (1812.2508).

Similarly, in Table 2, Fibonacci heap has the longest execution time (0.0698) with lower throughput

(15.06216), Binomial heap has longer execution time (0,05968) and throughput (19.92956) while Binary heap

has shortest execution time (0.00126) with higher throughput (3313.74744), It was observed that Binary heap

is one of most efficient priority queue variants of Dijkstra algorithm when using execution time and

throughput.

 This implies that, Fibonacci heap, Binomial heap will have consumed large amount of execution time of a

system with lower throughput, while Binary heap consumed lesser amount of execution time more efficient

due to its shortest amount of execution time with the highest throughput.

Table 1: Shows the summary result for the running (base on source node 750, target node 790).

Heap Type Execution Time (s) Throughput

 (edges/s)

Shortest Path

Total

Distance

Binary Heap 0.0006 1812.2508 750 -> 445 -> 790 80.0000

Fibonacci Heap 0.0459 21.7709 750 -> 445 -> 790 80.0000

Binomial Heap 0.0243 41.1909 750 -> 445 -> 790 80.0000

Table 2: Shows the summary result for the running up to five (5) different batches (source node – target node)

and compute the average performance to determine our final observation

Heap Type Execution Time (s) Throughput

(edges/s)

Shortest Path Average of total

Distance

Binary Heap 0.00126 3313.74744

750 -> 445 -> 790,

804 -> 105 -> 312,

722 -> 624 -> 238 -

> 724 -> 56 ->

312,648 -> 5 -> 820

89.2000

Fibonacci

Heap

0.0698 15.06216 750 -> 445 -> 790,

804 -> 105 -> 312,

722 -> 624 -> 238 -

> 724 -> 56 -> 312,

648 -> 5 -> 820

89.2000

Binomial

Heap

0.05968 19.92956 750 -> 445 -> 790,

804 -> 105 -> 312,

722 -> 624 -> 238 -

> 724 -> 56 -> 312,

724 -> 56, 648 ->

89.2000

Table.3: Comparison Summary

https://rsisinternational.org/journals/ijrsi
https://rsisinternational.org/journals/ijrsi
http://www.rsisinternational.org/

INTERNATIONAL JOURNAL OF RESEARCH AND SCIENTIFIC INNOVATION (IJRSI)

ISSN No. 2321-2705 | DOI: 10.51244/IJRSI |Volume XII Issue VIII August 2025

Page 924 www.rsisinternational.org

a

CONC

LUSIO

N

This work has described the shortest path problem and shown how the performance of Dijkstra’s algorithm can

be affected by the choice of data structure used for its priority queue. This research presented a comparative

performance analysis of some priority queue variants in Dijkstra algorithm among Binary heap, Fibonacci

heap, and Binomial heap. The algorithms were implemented with help of Matrix Laboratory (MATLAB

R2024b) software tested over a large range of problem instances. Implementation operates by loading the

entire graph with labeled vertices in to RAM before execution algorithms and its performance evaluation in

comparison with the algorithms used based on some parameters, the dataset was processed without any

alteration.

Based on experimentation, the results provide insights into the strengths and weaknesses of each priority

queue. Binary Heap demonstrates practical efficiency for sparse graphs and moderate workloads due to its

simplicity. Fibonacci Heap, while offering the best theoretical performance for dense graphs with frequent

updates, presents higher implementation complexity and overhead. Binomial Heap, known for efficient

merging operations, proves beneficial in specialized scenarios but generally underperforms compared to the

other two. This research concludes with recommendations for selecting an appropriate priority queue for

specific real-world applications of Dijkstra's algorithm. By bridging the gap between theoretical efficiency and

practical performance, the findings aim to guide practitioners and researchers in optimizing shortest-path

computations.

REFERENCES

1. Abhinau Jauhri (2013): Binomial and Fibonacci heaps in rocket (rkt heaps), abhinaujauhri@gmail.com.

2. Akhilesh Kumar Srivastava (2020}: A Practical approach to Data Structure and Algorithm with

Programming C: https://searchwork.stanford.edu.

3. Buyue, W. (2016). Performance Evaluation of Path finding Algorithms. University Thesis.

4. David Epstein (1998). Finding the K shortest path. SIAM Journal on computing – Vol. 28 iss.2 (1998).

https://doi.org/10.1137/5009753 9795.290 477.

5. Daniel Dominic Sleator and Robert Endrre Tanjan (1986); Self balancing heaps. SIAM J. compt. 15(1);

52-69, Feb. 1986.

6. Donald B. Johnson (1977). Efficient algorithm for shortest paths in sparse networks, J. ACM, 24 (1); 1-

13

7. Edsger W. Dijkstra: A note on two problems in connection with graphs Numerical mathematics 1:269-

271.1959.14,72.

8. Elwira Johansson (2020); Practical complexity of the Fibonacci heaps in simulation and modeling

framework. Department of Information Technology IT 20084 Uppsata University, post address Box

536, 75121 Uppsala. https://www.teknat.uu.se/ student.

9. Fredman, Michael Lawrence; Tarjan, Robert E. (1987). "Fibonacci heaps and their uses in improved

network optimization algorithms". Journal of the Association for Computing Machinery. 34 (3): 596–

615. doi:10.1145/28869.28874. S2CID 7904683.

10. Gerth Stolting et--al (2012). Strict Fibonacci heaps; In processing of the 44th symposium on theory of

computing STOC 12, pages 1177 – 1184, New York NY USA, ACM. 23

11. James B. Orlin (2010). A faster algorithm for the single source shortest path problem with few distinct

positive lengths J. of Discrete Algorithms, 8(2): 189- 198

Heap Type Execution Time (s) Throughput

Binary Heap Fast Very high

Fibonacci Heap Slow Low

Binomial Heap Medium High

https://rsisinternational.org/journals/ijrsi
https://rsisinternational.org/journals/ijrsi
http://www.rsisinternational.org/
mailto:abhinaujauhri@gmail.com
https://doi.org/10.1137/5009753
https://en.wikipedia.org/wiki/Michael_Fredman
https://en.wikipedia.org/wiki/Robert_Tarjan
https://en.wikipedia.org/wiki/Doi_(identifier)
https://doi.org/10.1145%2F28869.28874
https://en.wikipedia.org/wiki/S2CID_(identifier)
https://api.semanticscholar.org/CorpusID:7904683

INTERNATIONAL JOURNAL OF RESEARCH AND SCIENTIFIC INNOVATION (IJRSI)

ISSN No. 2321-2705 | DOI: 10.51244/IJRSI |Volume XII Issue VIII August 2025

Page 925 www.rsisinternational.org

a

12. James R, Driscoll et-al (1988); Relaxed heaps; an alternative for Fibonacci heaps with applications to

parallel computation commu. ACM 31(11); 1343 1354, Nov. 1988.23; MIT Open Access:

https://dx.doi.org/10.1016/j.jda.2009.03.001.

13. Jiri Vyskocil, Radek Marik (2013) Advance algorithms; binary heap, d-ary heap, binomial heap,

Amortized analysis, Fibonacci heap

14. Kahneman, D. (2011). Thinking, Fast and Slow. Farrar, Straus and Giroux.

15. Ritesh Bhat et-al (2023); Comparative analysis of Bellman-Ford ana Dijkstra’s algorithms for optical

evaluation route planning in multi-floor buildings. Article; https://doi.org/10.1080/23311916.2024.23

19394

16. Martell, E., & Sandberg, J. (2016). Evaluation of A* and its variants in path finding. Computational

Intelligence Journal, 14(6), 301–320.

17. Mikkel Thorup (2003). Integer priority queues with decrease key in constant time and the sole source

shortest paths problem. In preceding of the thirty-fifth annual ACM symposium on theory of

complexity. STOC ’03 pages 149 158 New York, NY, USA

18. Natick M. (2024): Matrix Laboratory (R2024b) programming language. https://www.mathworks,com.

19. Rhyd Lewis (2023): A Comparison of Dijkstra’s Algorithm using Fibonacci Heap, Binary Heap, and

self-balancing binary trees. Using C++ Implementations of these algorithms Variants School of

mathematics, Cardiff University, Cardiff, Wales. Lewis R9 @cf/ac.uk http://www:rhyd.lewis.eu or

https://doi.org/10.48550/arX.v.2303.10034

20. Rillet, S. (2006). Shortest paths in edge-weighted graphs. Journal of Applied Mathematics, 45(3), 254–

267.

21. Samah, H. (2020). Comparative analysis of Dijkstra and Bellman Ford algorithms in shortest path

optimization. International Journal of Computational Theory and Engineering, 12(4), 100–108.

22. Santoso, P. (2010). Comparative performance of Dijkstra, A*, and ant algorithms. International Journal

of Computer Science and Applications, 12(2), 125–134.

23. Siddhartha Sen Bernhard Haeuppler and Robert E. Tarjan. On Rank- pairing Heap. SIAM J. Compute.

40 96); 146314485, 2011.23

24. Sneha Sawlani (2017) “Explaining the performance of Bi-directional Dijkstra and A* on a road

networks. Electronic theses and Dissertation.1303. University of Denver.

https://digitalcommons.du.edu/etd/1303.

25. Sunita Deepak Garg (2018) Dynamiting Dijkstra: A solution to Dynamic shortest path problem through

Retroactive Priority Queue; Journal of King Saud University; Computer and Information Science 33(4)

26. Zenodo. (2018). Road network graphs for betweenness centrality algorithm. [Dataset]. Zenodo.

https://doi.org/10.5281/zenodo.1290209

27. Zhan, F. Benjamin; Noon, Charles E. (February 1998). "Shortest Path Algorithms: An Evaluation

Using Real Road Networks". Transportation Science. 32 (1): 65–

73. doi:10.1287/trsc.32.1.65. S2CID 14986297

https://rsisinternational.org/journals/ijrsi
https://rsisinternational.org/journals/ijrsi
http://www.rsisinternational.org/
https://doi.org/10.1080/23311916.2024.23%2019394
https://doi.org/10.1080/23311916.2024.23%2019394
http://www:rhyd.lewis.eu
https://en.wikipedia.org/wiki/Transportation_Science
https://en.wikipedia.org/wiki/Doi_(identifier)
https://doi.org/10.1287%2Ftrsc.32.1.65
https://en.wikipedia.org/wiki/S2CID_(identifier)
https://api.semanticscholar.org/CorpusID:14986297

