
INTERNATIONAL JOURNAL OF RESEARCH AND SCIENTIFIC INNOVATION (IJRSI)
ISSN No. 2321-2705 | DOI: 10.51244/IJRSI |Volume XII Issue XIII September 2025
Special Issue on Emerging Paradigms in Computer Science and Technology
|
www.rsisinternational.org
33. Jedličková, A. (2024). Ethical approaches in designing autonomous and intelligent systems: a comprehensive
survey towards responsible development. AI & Society, 40, 2703–2716. https://doi.org/10.1007/s00146-024-
02040-9
34. Jia, T., Wang, C., Tian, Z., Wang, B., & Tian, F. (2022). Design of Digital and Intelligent Financial Decision
Support System Based on Artificial Intelligence. Computational Intelligence and Neuroscience, 2022, 1–7.
https://doi.org/10.1155/2022/1962937
35. Jobin, A., Ienca, M., & Vayena, E. (2019). The Global Landscape of AI Ethics Guidelines. Nature Machine
Intelligence, 1(9), 389–399. https://doi.org/10.1038/s42256-019-0088-2
36. Kaas, M. H. L. (2024). The perfect technological storm: artificial intelligence and moral complacency. Ethics
and Information Technology, 26(3). https://doi.org/10.1007/s10676-024-09788-0
37. Kazim, E., & Koshiyama, A. S. (2021). A High-level Overview of AI Ethics. Patterns, 2(9), 1–12.
https://doi.org/10.1016/j.patter.2021.100314
38. Klingbeil, A., Grützner, C., & Schreck, P. (2024). Trust and Reliance on AI — an Experimental Study on the
Extent and Costs of Overreliance on AI. Computers in Human Behavior, 160, 108352.
https://doi.org/10.1016/j.chb.2024.108352
39. Kowald, D., Scher, S., Pammer-Schindler, V., Müllner, P., Waxnegger, K., Demelius, L., Fessl, A., Toller,
M., Mendoza, G., Šimić, I., Sabol, V., Trügler, A., Veas, E., Kern, R., Nad, T., & Kopeinik, S. (2024).
Establishing and evaluating trustworthy AI: overview and research challenges. Frontiers in Big Data, 7.
https://doi.org/10.3389/fdata.2024.1467222
40. Lam, J. W. (2016, April 4). Robo-Advisors: A Portfolio Management Perspective. Yale Department of
Economics. https://economics.yale.edu/sites/default/files/2023-
01/Jonathan_Lam_Senior%20Essay%20Revised.pdf
41. Li, C., Wang, H., Jiang, S., & Gu, B. (2024). The Effect of AI-Enabled Credit Scoring on Financial Inclusion:
Evidence from an Underserved Population of over One Million. AIS Electronic Library.
https://aisel.aisnet.org/misq/vol48/iss4/25/
42. Liu, Z., & Liang, H. (2025). Are credit scores gender-neutral? Evidence of mis-calibration from alternative
and traditional borrowing data. Journal of Behavioral and Experimental Finance, 47, 101081.
https://doi.org/10.1016/j.jbef.2025.101081
43. Machado, J., Sousa, R., Peixoto, H., & António Abelha. (2024). Ethical Decision-Making in Artificial
Intelligence: A Logic Programming Approach. AI, 5(4), 2707–2724. https://doi.org/10.3390/ai5040130
44. Madaan, H. (2025, February 14). XAI: Bringing Transparency And Trust To Algorithmic Decisions. Forbes.
https://www.forbes.com/councils/forbestechcouncil/2025/02/14/the-rise-of-explainable-ai-bringing-
transparency-and-trust-to-algorithmic-decisions/
45. Maier, T., Menold, J., & McComb, C. (2022). The Relationship Between Performance and Trust in AI in E-
Finance. Frontiers in Artificial Intelligence, 5. https://doi.org/10.3389/frai.2022.891529
46. Mehrabi, N., Morstatter, F., Saxena, N., Lerman, K., & Galstyan, A. (2019). A Survey on Bias and Fairness
in Machine Learning. ArXiv:1908.09635 [Cs]. https://arxiv.org/abs/1908.09635
47. Morley, J., Floridi, L., Kinsey, L., & Elhalal, A. (2021). From what to how: An overview of AI ethics tools,
methods and research to translate principles into practices. AI and Society, 36, 59–72.
48. Najem, R., Bahnasse, A., Amr, M. F., & Talea, M. (2025). Advanced AI and big data techniques in E-finance:
a comprehensive survey. Discover Artificial Intelligence, 5(1). https://doi.org/10.1007/s44163-025-00365-y
49. Nallakaruppan, M. K., Chaturvedi, H., Grover, V., Balusamy, B., Jaraut, P., Bahadur, J., Meena, V. P., &
Hameed, I. A. (2024). Credit Risk Assessment and Financial Decision Support Using Explainable Artificial
Intelligence. Risks, 12(10). https://doi.org/10.3390/risks12100164
50. Nwafor, C. N., Nwafor, O., & Brahma, S. (2024). Enhancing transparency and fairness in automated credit
decisions: an explainable novel hybrid machine learning approach. Scientific Reports, 14(1).
https://doi.org/10.1038/s41598-024-75026-8
51. Raji, A. A. H., Alabdoon , A. H. F., & Almagtome, A. (2024). AI in Credit Scoring and Risk Assessment:
Enhancing Lending Practices and Financial Inclusion. International Conference on Knowledge Engineering
and Communication Systems, 15, 1–7. https://doi.org/10.1109/ickecs61492.2024.10616493
52. Raji, I. D., Smart, A., White, R. N., Mitchell, M., Gebru, T., Hutchinson, B., Smith-Loud, J., Theron, D., &
Barnes, P. (2020). Closing the AI Accountability Gap: Defining an End-to-End Framework for Internal
Algorithmic Auditing. ArXiv:2001.00973 [Cs]. https://doi.org/10.48550/arXiv.2001.00973