
www.rsisinternational.org
INTERNATIONAL JOURNAL OF RESEARCH AND SCIENTIFIC INNOVATION (IJRSI)
ISSN No. 2321-2705 | DOI: 10.51244/IJRSI |Volume XII Issue XIII September 2025
Special Issue on Emerging Paradigms in Computer Science and Technology
|
4. Eldakhly, N. M. (2025). Optimized intrusion detection with deep learning classification models. Neural
Computing and Applications. https://doi.org/10.1007/s00521-025-11383-3
5. Ghosh, U., & Sanyal, S. (2021). Explainable AI for cybersecurity in smart grids. Computers & Security,
105, 102223.
6. Gurung, S., Ghose, M. K., & Subedi, A. (2019). Deep learning approach on network intrusion detection
system using NSL-KDD dataset. International Journal of Computer Network and Information Security,
11(3), 12–20. https://doi.org/10.5815/ijcnis.2019.03.02
7. Haozhe, Z. (2025). Deep Learning-Based Intrusion Detection System for Internet of Things Networks.
Discover Internet of Things, 5, Article 74.
8. Hussain, F., Hussain, R., Hassan, S. A., & Hossain, E. (2022). Machine learning in IoT security: Current
solutions and future challenges. IEEE Communications Surveys & Tutorials, 24(1), 1–35.
9. Kakolu, S., Faheem, M. A., & Aslam, M. (2023). AI-enabled intrusion detection systems in IoT networks:
Advancing defense mechanisms for resource-constrained devices. International Journal of Science and
Research Archive, 9(1), 752–769. Link
10. Mohanty, S., Kumar, S., & Agarwal, M. (2024). Enhancing accuracy with recursive feature selection
using multiple machine learning and deep learning techniques on NSL-KDD dataset. In Advances in
Data-Driven Computing and Intelligent Systems (pp. 251–262). Springer. https://doi.org/10.1007/978-
981-99-9518-9_18
11. Nisha, M., & Udhayashri, G. (2025). AI-Powered Intrusion Detection System for IoT Security.
International Journal of Science and Advanced Technology, 2(2025), 3802. Link
12. Nwakeze, M. O. (2024). The impact of blockchain technology on improving cybersecurity measures.
International Research Journal of Modernization in Engineering Technology and Science, 6(6), 2967–
2979.
13. Nwakeze, O. M., & Mohammed, N. U. (2025). Intelligent cyber threat detection and mitigation system
for network security improvement using artificial neural network. American Journal of Sciences and
Engineering Research, 8(4), 48–56. American Journal of Sciences and Engineering Research.
14. Revathi, S., & Malathi, A. (2013). A detailed analysis on NSL-KDD dataset using various machine
learning techniques for intrusion detection. International Journal of Engineering Research & Technology
(IJERT), 2(12), 1848–1853. Retrieved from https://www.ijert.org
15. Sahli, Y. (2022). A comparison of the NSL-KDD dataset and its predecessor the KDD Cup ’99 dataset.
International Journal of Scientific Research and Management, 10(4), EC-2022-832–839.
https://doi.org/10.18535/ijsrm/v10i4.ec05
16. Ullah, I., & Mahmoud, Q. H. (2022). A hybrid deep learning model for anomaly-based intrusion detection
in IoT networks. Journal of Network and Computer Applications, 204, 103396.
17. Williamson_5. (2024). NSL-KDD Dataset. Kaggle. Retrieved from
https://www.kaggle.com/datasets/williamson5/nsl-kdd-dataset
18. Wu, T., Fan, H., Zhu, H., You, C., Zhou, H., & Huang, X. (2022). Intrusion detection system combined
enhanced random forest with SMOTE algorithm. EURASIP Journal on Advances in Signal Processing,
2022(39). https://doi.org/10.1186/s13634-022-00871-6
19. Zhang, H. (2025). Development of an intelligent intrusion detection system for IoT networks using deep
learning. Discover Internet of Things, 5, Article 74. Link