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ABSTRACT 

The most commonly used methods of conventional geomechanical parameters estimation which rely on costly, 

sparse laboratory tests and empirical correlations based on just a few well logs are linked to uncertainties and 

spatial gaps. This study reveals an innovative data-driven model, which incorporates Advanced Machine 

Learning techniques to precisely and efficiently estimate key geomechanical properties based directly on 

collected well-logging data. The techniques include, Deep Learning Architecture (DL), Deep Neural Network 

(DNN) and Artificial Neural Network (ANN). The machine learning application ensures a huge boost to 

yielding high prediction accuracies and that of running continuous and high-resolution profiles of 

geomechanical properties along the wellbore. This method is fast, and has low-cost geomechanical 

characterization that is vital to optimal drilling, hydraulic fracturing design, reservoir management, and 

subsurface integrity assessment, resulting in improved operating safety and efficiency. The estimated 

geomechanical parameters include elastic properties (young’s modulus and poisson’s ratio) and rock’s strength 

(unconfined compressive stress), while the artificial neutral network technique was applied to estimate the 

geomechanical parameters in the oil wells of Akata, Agbada and Benin Formations in Bonny Island, Rivers 

State. 

Keywords: Logging Data-Driven, Geomechanical Parameter Estimation, Advanced Machine Learning, 

Comparative Analysis of Techniques, Geomechanical Properties. 

INTRODUCTION 

Mechanical and petro-physical properties of rocks are characterized by their textural properties. To a high 

extent, such parameters determine the stability of the rock mass. The capacity of assessing both short- and 

long-term rock behaviors according to the interaction between distinct parameters of rock texture, 

petrophysical and mechanical properties are thus highly instrumental to a number of geoengineering materials 

(Askaripour et al., 2022). Lin et al., (2021) opined that, how the properties of rock affect the mechanism of 

electromagnetic radiation (EMR) phenomenon of the process of rock fracture is an issue that is significant to 

study in solid mechanics and earthquake forecasting. According to Yan et al., (2020) Rock anisotropy is an 

intrinsic property of natural rock mass, and layered rock has the most significant effect on the stress 

distribution and deformation of a rock mass. With the development of rock mechanics theory and constitutive 

theory, the study of rock anisotropy has become one of the focuses and hotspots in the field of rock mechanics. 

LITERATURE REVIEW 

Few studies have been carried out on fluid-rock interaction like adsorption, precipitation, fines migration, and 

wetting properties in porous media utilizing EOR (Enhanced oil recovery) fluids, however, the precise 

mechanism of these fluids that occurs during the EOR application of rock remains uncertainly revealed. 

Depending on a set of parameters, these fluid- rock interactions determine the scope and consequences of these 

interactions on EOR. These factors are type of fluid injected and the composition of chemicals, the type of 

rock and mineralogical composition, brine PH, brine salinity and composition. Furthermore, all the methods of 
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quantification of fluid-rock interactions possess certain drawbacks in terms of their application, measurement 

range, or the level of uncertainty (Isah et al., 2022). 

Thin-section identification in rocks is a very crucial geological exploration instrument in interpreting and 

identifying the structure of the earth. It also turns out to be a significant assessment technique of oil and gas 

exploration and development. It can focus on the identification of petrological properties of the reservoirs, the 

type of diagenesis, distinction of the reservoir cave space and pore features. Those properties of physical 

nature and sedimentary environment of the reservoir have to be comprehended, the parameters desired of 

reservoir attained, oil and gas development plan and reservoir calculation has to be made. The conventional 

thin-section identification technology had an over one-hundred-year history and relied mainly on the visual 

identification of the geological experts with the help of the optical microscope, and was plagued with the 

shortcomings of strong subjectivity, high experience dependence and heavy work-load, long-identification-

cycle, and inability to reach complete and accurate quantification (Liu et al., 2022). 

Geomechanical data are never adequate in quantity, proportion, precision, and accuracy to be utilized in 

design. This stems out of the fact that rock masses are naturally complex and variable in all scales. 

Geomechanical properties of the rock masses are not completely random in theory. Since rocks were created 

and constantly altered with multiple complicated processes, which lead to physical heterogeneity resulting to 

differences in the values of measured physical properties, even in a single rock type. Moreover, the natural 

fractures exist and this leads to the existence of spatial and regional differences in rock mass property, i.e. 

natural fractures bring about spatial and regional variation (Małkowski et al., 2021). 

In order to develop a successful geomechanical characterization of the rock masses, Heidarzadeh et al., (2021) 

reported a suitable interpretation on the rock masses lithological heterogeneity ought to be achieved where 

both the geological and geomechanical data would be considered. To better explain the reliability and 

usefulness of geological surveys in application to the field of rock mechanics, a geomechanical 

characterization study is made on the heterogeneous Niobec Mine (Quebec, Canada) by taking into account the 

nature of the various lithological units identified in the mass. The resulting outcomes of the past field and 

laboratory testing campaigns, in terms of lithological units, became part of determining the variability related 

to the intact rock geomechanical parameters of the various current lithological units.  

METHODOLOGY 

A. Geomechanical Parameters Estimation 

1. Elastic Properties: Elastic properties of rocks can be determined through laboratory measurement and well 

log data parameters (Davy et al., 2018). The elastic properties for this research was determined through well 

log data, and the parameters include dynamic young’s modulus and dynamic poisson’s ratio. 

1. Young Modulus  

It measures the rock’s stiffness that makes it resistant to deformation under stress, especially during drilling 

operations (Mahdi & Alrazzaq, (2023).  

𝐸 =  
𝜎

∈
 …………………………………………..1 

𝑬𝒅 = 𝝆𝑽²𝒔
𝑽𝟐𝒑−𝑽²𝒔

𝟑𝑽𝟐𝒑−𝟒𝑽²𝒔
………………………..2 

The Young’s modulus of each types of rock are presented in table 1 below 

Table I: Young’s Modulus of Rock Types: Source from Małkowski et al., (2021). 

Rock Type Young’s Modulus (GPa) Level Effect 

Soft Shale 0.5-5 Low Easy deformation 
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Sandstone 10-70 Medium Oil or gas extraction fracability 

Limestone 30-80 High Tendency of cracking 

Granite 50-100 Very High Strong and rigid 

Salt 10-30 Medium Creeping material 

Poisson’s Ratio (ν): It measures lateral strain against the axial strain of the rock (Lutz & Zimmerman, 2021). 

The poisson’s ratio data for different rock types are presented in table 2 below; 

Vd =
V2p−V²s

V2p−4V²s
……………………………………………………………………3 

Table II. Poisson’s Ratio Data of Rock Types: Source from Małkowski et al., (2021). 

Rock Type Poison’s Ratio (v) Level Effect 

Soft Shale 0.25-0.40 High High lateral expansion 

Sandstone 0.10-0.30 Medium Forecasting of stress anistrophy 

Coal 0.10-0.15 Low Low lateral strain 

Salt 0.35-0.45 Very High High ductility property 

2. Rock Strength: The rock strength determines the force applied during drilling operations at the oil 

wells. Therefore, it is expedient to estimate the stress value of the rock (Kalantari et al., 2022). 

1. Unconfined Compressive Stress  

It measures maximum axial stress before failure (Li & Yang, 2024). The unconfined comprehensive stress data 

is presented in table 3 below; 

Table III: Unconfined Compressive Stress Data of Rock Types (Source from Lin et al., (2021). 

Rock Type UCS (MPa) Level Implication 

Weak Shale 0.25-0.40 Low Easy to collapse 

Sandstone 0.10-0.30 Medium Too hard to drill 

Limestone 0.10-0.15 High High rigidity 

Granite 0.35-0.45 Very High Little drillable condition 

Chalk 1-15 Extremely weak Instability 

2. Friction Angle (φ)  

It measures internal shear resistance e.g angle of failure in Mohr-Coulomb theory (Zoorabadi & Muralha, 

2025). The friction angle data for rocks at oil wells are presented in table 4 below; 

θ = tan⁻¹(μ)…………………………………………………………………………4 
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Table IV. Friction Angle Data of Rock Types (Source from Zoorabadi & Muralha, 2025). 

 Rock Type Friction Angle (φ) (o) Level Geomechanics Responsibility 

Clay 10-20 Low High landslide 

Sandstone 25-40 Medium Monitors the pressure of shear failure 

Conglomerate 35-45 High High stability 

Fractured Rock Less than 15 Very Low Risk of deficiency activation 

B. Estimate Comparison of Young’s Modulus, Poisson’s Ratio and Unconfined Compressive Stress 

The comparison of the geomechanical parameters data determined through well log data are presented in figure 

1 below;  

 

Fig. 1. Geomechanical Parameters Data Comparison determined from well log data (Source from Sanei et al., 

2023). 

C. Advanced Machine Learning Techniques 

1. Deep Learning Architecture: The major difference between the conventional machine learning model and 

advanced learning model is its automatic learning process which makes deep learning suitable for wide range 

of applications (Endo, 2023). Sewak et al., (2020) opined that, based on the applications and types of neural 

networks, deep learning architecture is classified into three major classes, as presented in the figure 2 below; 

 

Fig. 2. Classes of Deep Learning Architecture in Machine Learning (Source from Smys et al., 2020). 
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Generative Architecture: They are generally called unsupervised feature learning model, because they are 

generative in nature. The data labels are not taken into consideration in this strategy. Such kind of architecture 

is developed when there is a little space, such models learn the lower level of the data and offers the required 

solutions to the hard network, because data is trained to work without relying on other layers (Caetano et al., 

2020). 

Discriminative Architectures: In the processing of information and signals, discriminative architectures are 

mostly dominating. The deep structures with conditional random fields have been developed whose output at 

one level (random field) of the lower part becomes stacked upon the original input data that is on upper layer 

(Smys et al., 2020). According to Bhatt et al., (2021) language processing uses discriminative architectures and 

identification apps. Through these apps, HMM (Hidden Markov Model Tools) are witnessed through the 

activities of the hidden layers in form of different combinations that make up a discriminative architecture.  

Hybrid Architecture: Hybrid architecture has both discriminative and generative process. The generative 

parts are utilized and combined with discriminative parts in order to achieve the last solution. The generative 

models are applied to solve non-linear parametric problems which decreases the initialization issues. Also 

generative models have regularized control features making the system simple (Yang et al., 2022). Liu and 

Abbeel, (2020) illustrated an example of how Deep Neural Network (DNN) is a recognized hybrid framework 

in which the generative framework of deep network is employed. Deep Neural Network is developed by 

modifying the belief network based on the discriminative architecture in training process.  

2. Deep Neural Network: Deep Neural Networks (DNNs) have transformed the study of rocks in geology by 

automating the process of pattern recognition of intricate geometries, offer higher accuracy, and guarantee 

timely analyses of geological engineering, resource prospecting and hazard mitigation (Samek et al., 2021). Li 

et al., (2023) opined that, mathematically, more complex deep learning strategies like deep neural networks 

(DNN) have been formulated to explore multi-variable systems which have shown similar, and even better 

performance than human experts. The deep and shallow neutral network layers are presented in figure 3 below; 

 

Fig. 3. Deep and Shallow Layers of Deep Neural Networks (Source from Azarafza et al., 2022). 

3. Artificial Neural Networks: Artificial Neural Networks have the ability to convert raw well logs to high-

resolution profiles of rock properties that describe geomechanics by acquiring an elaborate non-linear 

connection (Qiang et al., 2020). Millán et al., (2021) noted that, this involves log measurements as well as rock 

property measurements that have been checked in the laboratory or using cores. The networks applicable to 

ANNs are presented in table 5 below; 

Table V. Artificial Neural Networks : Source from Millán et al., (2021): Qiang et al., (2020). 

Network Type Structure Use Case 

Multilayer Perceptron (MLP) 3–8 fully connected (dense) layers Predicting UCS or E-static from 5–7 

logs. 

1D Convolutional Neutral Convolutional layers + pooling for depth Detecting thin-bed effects on stress 
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Network (CNN) patterns (σ). 

Hybrid CNN-MLP CNN extracts spatial features → MLP 

maps to outputs 

Pore pressure prediction from log 

sequences. 

Physics-Informed NN (PINN) Custom loss enforcing rock physics rules. Stress estimation obeying Hooke’s 

law. 

ANN can be best described through the following; 

Hyperparameters 

According to, Kadhim et al., (2022) Hyperparameters regulate the learning of the ANN. The major examples 

of hyperparameters include;   

Hidden layer/neurons: Determines the complexity of the model. 1–3 hidden layers (with 10–50 neurons 

each) typically balance accuracy and efficiency.  Although geomechanics implementations often use three 

hidden layers containing 10 to 50 neurons. 

Learning rate: Controls the step length in the optimization (e.g., Adam). Noise in log descriptions of data 

causes no overshooting of minima at 0.001 or 0.01.   

Regularization (L2/dropout): The large weights are punished (L2) or the neurons are randomly removed 

(dropout) to mitigate over-fitting.   

ANN Architecture   

ANN architecture encompass input, hidden and output layers, as presented in figure 4 below. Madhiarasan and 

Louzazni, (2022), described the layers as: 

Input layer: Takes the normalized logs (e.g GR, RHOB, DTC).   

Hidden layers: Use summation of network weights and a non-linear activation function (e.g. ReLU), to learn 

features.   

Output layer: It provides approximations (e.g. UCS, Poisson Ratio). It can include image logs which are a 

type of hybrid architecture (e.g., CNN-MLP).   

 

Figure 4: Artificial Neural Networks Architecture Design (Source from Azarafza et al., 2022). 

Training and Validation Approach   
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Training: 7080 per cent depth-indexed core-log pairs are training to minimize weights through 

backpropagation. Convergence stabilizes when the training is done in mini-batch (Livieris, 2018).   

Validation: Hyperparameters are tuned and early stopping applied in case of stagnation on the loss with 15-20 

percent of the data. Robustness is guaranteed by K-fold cross-validation between the wells (Li t al., 2022).   

Performance Metrics   

Erickson & Kitamura, (2021) described the major performance metrics of ANN as, 

RMSE (Root Mean Squared Error): Mainly used to measure regression e.g. RMSE < 1.5 GPa to Youngs 

Modulus.   

R2 (Coefficient of determination): Represents the proportion of variance, the higher the better (>0.90).   

MAE (Mean Absolute Error): It is very receptive to outliers in fundamental measurements.   

Overfitting and Underfitting   

Salman and Liu, (2019) revealed that, 

Overfitting: model learns the noise in the training data and overfit with new wells. Reduce it through dropout, 

L2 regularization, and network size-reduction.   

Underfitting: oversimplified structure can overlook important log-parameter correlations. Train more layer 

neurons or more iterations.   

D. Comparative Analysis of Techniques 

The Artificial Neural Networks and Deep Learning Architectures are comparable in that they both imitate the 

functioning of biological neurons, but differ fundamentally in their size, complexity, and capacities 

(Montesinos López et al., 2022).  Saikia et al., (2020) noted that, there are shallow ANNs that are at most 2 

layers deep and are known to excel at easier problems, such as a regression or analysis of simple logs. Their 

lightweight design fits the small data cases but it is not designed to handle raw, and high-dimensional logging 

data. In Deep Learning (DL) Architectures, numerous hidden layers, e.g. CNNs (Convolutional Neural 

Networks), and RNNs (Recurrent Neural Networks) are stacked, allowing to automatically learn features (Guo 

et al., 2023). Kufel et al., (2023) noted that, Deep Learning lives in large amounts of data (terabytes logs) and 

yet requires GPUs, however, it excels ANNs on complex applications such as 3D prediction of reservoir 

properties. Compared to ANNs which are manual transmission (controlled but constrained), DL is more self-

driving (autonomous but resource-intensive). 

E. Research Study Area 

The Bonny Island is located in the Rivers State and is at the center of Niger Delta petroleum system, which is a 

world-class hydrocarbon province that is typified by its complex, and prograding deltaic sequences (Obasohan 

et al., 2021). Bankole et al., (2014) noted that, the main geology in the subsurface is dominated by Agbada 

Formation which was a critical period that contained interbedded sandstones and shales that were laid down in 

a delta-front to shallow marine landscape in the Miocene to Pliocene. These sand bodies are the main 

hydrocarbon reservoirs but they are highly heterogeneous as to their thickness, grain size, as well as the clay 

content because the depositional environments were changing frequently.  

The Benin Formation is a generally unconsolidated continental sand in which overpressured Akata Formation 

shales becomes the main regional source-rock and seal.  Such a geological environment poses difficult 

prospects to geomechanical modeling. The stratigraphy is dissected by growth faults which form 

compartmentalized reservoirs and with abrupt change in stress orientation and magnitude. They are 

interbedded sequences of sand-shale that are mechanically anisotropic with sands easily compacted and shales 
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easily swelling or failing. The unusually fast rates of sedimentation have resulted in high and abnormal pore 

pressures especially in and around fault planes and in deeper shales units, and extremely limited drilling mud 

weight windows (Diab et al., 2023).  

Due to the fact that the wellbore instability risk in addition to sanding and fault reactivation threats are acute in 

Bonny, high-fidelity serves the geomechanical model required environment. This is what made its complexity 

ideal of machine learning (ML) methods. ML algorithms have a potential to uncover concealed regularities in 

this data, combining measurements that lack spatial consistency into an approximation of spatially variable 

geomechanical parameters more reliable than empirical correlations, and eventually optimizing drilling safety 

and reservoir management in this high stakes deltaic environment (Ogoro, 2014). The Bonny Island map is 

presented in figure 5 below; 

 

Fig. 5. Map Showing Bonny Island (Source from Obasohan et al., 2021). 

RESULTS AND DISCUSSION 

F. Geomechanical Parameters Estimation 

The estimated Young’s Modulus data of the Akata, Agbada and Benin formations in the Bonny Island are 

presented in table 6 below; 

Table VI: Young’s Modulus Data of the Akata, Agbada and Benin Formations 

Depths Akata Formation Agbada Formation Benin Formation 

Shallow Depths 2-15 MPa 100-500 Mpa 10-50 Mpa  

Intermediate Depths 10-50 Mpa 500-2,000 MPa 50-150 Mpa 

Greater Depths 30-100 Mpa › 2,000 Mpa 150-400 Mpa 

The estimated Poisson’s ratio data of the Akata, Agbada and Benin formations in the Bonny Island are 

presented in table 7 below; 

Table VII: Poisson’s Ratio Data of the Akata, Agbada and Benin Formations 

Conditions Akata Formation Agbada Formation Benin Formation 

Undrained 0.45-0.49 0.30-0.40 

Short term loading – 0.45-0.49 

0.35-0.45 

Short term loading – 0.45-0.49 

Drained 0.30-0.40 0.25-0.35 

Long term loading – 0.30-0.40 

0.25-0.35 

Long term loading – 0.30-0.40 
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Dynamic 0.40-0.48 0.33-0.38 

Long data – 0.40-0.48 

0.33-0.42 

The estimated Unconfined Compressive Stress data of the Akata, Agbada and Benin formations in the Bonny 

Island are presented in table 8 below; 

Table VIII. Unconfined Compressive Stress Data of the Akata, Agbada and Benin Formations 

Depths Akata Formation Agbada Formation Benin Formation 

Shallow Depths 5-20 kPa 2-10 MPa 10-30 kPa 

Intermediate Depths 10-50 kPa 10-40 MPa 30-100 kPa 

Greater Depths 50-200 kPa 40-150+ MPa 100-300 kPa 

G. Advanced Machine Learning Models 

The well logged geomechanical parameters were estimated through the artificial neutral network, specifically 

the Multilayer Perceptron (MLP) technique, as presented in the figures below; 

 

Fig. 6. Young Modulus Parameter of Multilayer Perceptron (MLP) Technique 

 

Fig. 7. Poisson’s Ratio Parameter of Multilayer Perceptron (MLP) Technique 
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Fig. 8. UCS Parameter of Multilayer Perceptron (MLP) Technique 

CONCLUSION 

High-precision geomechanical parameters estimation of normalized logs using advanced machine learning 

techniques such as, DL, DNN and ANN was realized, which proved to be more effective than empirical 

methods. With these systems in real-time, dynamic wellbore stability alerts could be achieved with less than 50 

milliseconds delay. However, the discussed models are data dependent and need quality logs or core samples 

to train on. Violation of physics is possible without any limit, and due to the computational cost, it is difficult 

to deploy edges in complicated 3D environments. This study has contributed to end-to-end workflows so as to 

transform routine logs to lab-grade mechanical properties at reduced costs through fewer tests. The hybrid 

architectures helped to fill the gap between data scarcity and physical realism, which provided field-deployable 

solutions to proactive geomechanical management efforts. 
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