
INTERNATIONAL JOURNAL OF RESEARCH AND SCIENTIFIC INNOVATION (IJRSI)
ISSN No. 2321-2705 | DOI: 10.51244/IJRSI |Volume XII Issue IX September 2025
www.rsisinternational.org
3.
H. Cohen, Number Theory, Volume I: Tools and Diophantine Equations, Graduate Texts in Mathematics
239, Springer, New York, 2007.
4.
J. H. E. Cohn, The Diophantine equation x
4
+ 1 = Dy
2
, Math. Comp. 61 (1993), 573–577.
5.
G. Faltings, E
n
d
l
i
chkei
t
ss
¨
a
t
ze
f
u
¨
r
abelsche
V
a
r
i
et
¨
a
t
en
u
¨
b
er
Z
ah
l
k
¨
o
r
p
er
n
,
Invent. Math. 73 (1983),
349–
366.
6.
C. F. Gauss, Disquisitiones Arithmeticae, Leipzig, 1801.
7.
J. Gebel, A. P
e
t
h
˝
o,
and H. G. Zimmer, On Mordell’s equation, Compos. Math. 110 (1998), 335–
367.
8.
G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, 6th ed., Oxford
University Press, Oxford, 2008.
9.
W. Ljunggren, Einige Eigenschaften der Einheiten reeller quadratischer und rein-biquadratischer
Z
ah
l
k
¨
o
r
p
er
,
Oslo Vid.-Akad. Skrifter I 12 (1942), 1–48.
10.
L. J. Mordell, On the rational solutions of the indeterminate equations of the third and fourth degrees,
Proc. Cambridge Philos. Soc. 21 (1922), 179–192.
11.
L. J. Mordell, Diophantine Equations, Pure and Applied Mathematics 30, Academic Press,
London, 1969.
12.
W. Narkiewicz, Elementary and Analytic Theory of Algebraic Numbers, 3rd ed., Springer
Monographs in Mathematics, Springer, Berlin, 2004.
13.
B. Poonen, Rational points on varieties, Graduate Studies in Mathematics 186, American
Mathematical Society, Providence, RI, 2017.
14.
J. H. Silverman and J. Tate, Rational Points on Elliptic Curves, Undergraduate Texts in
Mathematics, Springer, New York, 1992.
15.
J. H. Silverman, The Arithmetic of Elliptic Curves, Graduate Texts in Mathematics 106, Springer,
New York, 1986.
16.
N. P. Smart, The Algorithmic Resolution of Diophantine Equations, London Mathematical
Society
Student Texts 41, Cambridge University Press, Cambridge, 1998.
17.
M. Stoll, Rational and integral points on curves, surveys in Diophantine and Computational Number
Theory (to appear).
18.
P. G. Walsh, A quantitative version of Runge’s theorem on Diophantine equations, Acta Arith. 62
(1992), 157–172.