2. Alanazi, A., Shakeabubakor, A., Abdel-Khalek, S., & Alkhalaf, S. (2023). IoT enhanced metaheuristics
with deep transfer learning based robust crop pest recognition and classification. Alexandria Engineering
3. Anwar, Z., & Masood, S. (2023). Exploring deep ensemble model for insect and pest detection from
images. Procedia Computer Science, 218, 2328–2337.
4. Bhoi, S., Jena, K., Panda, S., Long, H., Kumar, R., Subbulakshmi, P., & Jebreen, H. (2021). An Internet
of Things assisted unmanned aerial vehicle-based artificial intelligence model for rice pest detection.
5. Chi, S., Lee, S., Ryu, H., Shim, H., & Ha, C. (2015). Dynamics and simulation of the effects of wind on
UAVs and airborne wind measurement. The Japan Society for Aeronautical and Space Sciences, 58(4),
187–192.
6. Deepika, P., & Arthi, B. (2022). Prediction of plant pest detection using improved mask FRCNN in cloud
7. Ebere Uzoka, C., Anoliefo, E., Udanor, C., Chijindu, T., & Nwobodo, L. (2025). Ablind navigation guide
model for obstacle avoidance using distance vision estimation based YOLO-V8n. Journal of the Nigerian
8. Gu, Y., Zhang, G., Bi, Y., Meng, W., Ma, X., & Ni, W. (2023). Pitch mathematical modeling and dynamic
analysis of a HALE UAV with moving mass control technology. Aerospace, 10(11), 918.
9. Harbor M.C, Eneh I.I. Ebere U.C. (2021). Precision control of autonomous vehicle under slip using ANN.
International Journal of Research and Innovation in Applied Science (IJRIAS). Vol 6; Issue 9.
10. Karar, M., Abdel-Aty, A., Algarni, F., Hassan, M., Abdou, M., & Reyad, O. (2022). Smart IoT-based
system for detecting RPW larvae in date palms using mixed depth wise convolutional networks.
11. Kekong P.E, Ajah I.A., Ebere U.C. (2019). Real-time drowsy driver monitoring and detection system
using deep learning based behavioural approach. International Journal of Computer Sciences and
12. López-Briones, F., Sánchez-Rivera, M., & Arias-Montano, M. (2020). Aerodynamic analysis for the
mathematical model of a dual-system UAV. 17th International Conference on Electrical Engineering,
Computing
Science
and
Automatic
Control
(CCE),
1–6.
13. Oti-Owom, J. O., Eke, J., & Umeozulu, A. (2024). Modelling of intelligent robot for gas pipeline leakage
detection and control using deep learning technique. Journal of Engineering and Technology, 1(7).
14. Rahul, A., Divya, P., & Shishirkumar, K. (2018). Mathematical modeling and simulation of quadcopter-
UAV using PID controller. 4th International Conference on Engineering Confluence & Inauguration of
Lotfi Zadeh Center of Excellence in Health Science and Technology (LZCODE) – EQUINOX 2018.
15. Sochima V.E. Asogwa T.C., Lois O.N. Onuigbo C.M., Frank E.O., Ozor G.O., Ebere U.C. (2025)”;
Comparing multi-control algorithms for complex nonlinear system: An embedded programmable logic
control
applications;
16. Sun, L., Cai, Z., Liang, K., Wang, Y., Zeng, W., & Yan, X. (2023). An intelligent system for high-density
small target pest identification and infestation level determination based on an improved YOLOv5 model.
17. Ulagwu-Echefu A., Eneh .I.I. Ebere U.C. (2021). Enhancing realtime supervision and control of
industrial processes over wireless network architecture using model predictive controller. International
Journal of Research and Innovation in Applied Science (IJRIAS); vol 6; Issue 9.
Page 2111
www.rsisinternational.org