Investigation of Submerged Aquatic Macrophytes in Chhatrapati Sambhajinagar District of Maharashtra
Authors
Indian Institute of Food Science and Technology, Chhatrapati Sambhajinagar - 431005 (India)
Dr. Babasaheb Ambedkar Marathwada University, Aurangabad - 431004 (India)
Article Information
DOI: 10.51244/IJRSI.2025.120800160
Subject Category: Environment
Volume/Issue: 12/8 | Page No: 1778-1793
Publication Timeline
Submitted: 2025-07-04
Accepted: 2025-07-10
Published: 2025-09-16
Abstract
Aquatic macrophytes, commonly known as hydrophytes, play a crucial role in providing structural habitat that influences fish communities. This, in turn, allows zooplankton and other macro-invertebrates to exert a top-down control on algal growth, a process that is largely unaffected by the nutrient levels in the water body. Nevertheless, their populations face significant threats from factors such as eutrophication, sewage discharge, and industrial pollutants. Additionally, seasonal variations can lead to a notable decline in the diversity of these aquatic plants. Therefore, it is vital to establish baseline data to evaluate these impacts and ensure the health of aquatic ecosystems.
A comprehensive survey was conducted to assess the presence of submerged macrophyte populations in the waterways of Chhatrapati Sambhajinagar District, with meticulous documentation of the results. The findings reveal that the Chhatrapati Sambhajinagar district boasts a rich diversity of submerged macrophytes. Notably, the district is distinguished by its significant representation of a remarkable variety of submerged macrophytes, comprising 24 species across 9 families. The study indicates that the Hydrocharitaceae family is the most prevalent, featuring 12 species, followed by Potamogetonaceae with 3 species, Ceratophyllaceae and Haloragaceae with 2 species each, and Characeae, Fabaceae, Nymphaeaceae, and Pontederiaceae families, each represented by 1 species.
Keywords
Aquatic vegetation, Management of lakes, Wetland areas, Emergent, submerged, and floating macrophytes, Biodiversity, Water resources.
Downloads
References
1. crassipes and Pistia stratiotes in the Pantanal–Brazil. In Proceedings of the German-Brazilian Workshop on Neotropical Ecosystems (pp. 875–880). [Google Scholar] [Crossref]
2. Ahmadi-Nedushan, B., St-Hilaire, A., Bérubé, M., Robichaud, É., Thiémonge, N., & Bobée, B. (2006). A review of statistical methods for the evaluation of aquatic habitat suitability for instream flow assessment. River Research and Applications, 22(4), 503–523. [Google Scholar] [Crossref]
3. Ali, M. M., Mageed, A. A., & Heikal, M. (2007). Importance of aquatic macrophyte for invertebrate diversity in large subtropical reservoir. Limnologica - Ecology and Management of Inland Waters, 37(2), 155–169. [Google Scholar] [Crossref]
4. Arthaud, F., Mousset, M., Vallod, D., Robin, J., Wezel, A., & Bornette, G. (2012). Effect of light stress from phytoplankton on the relationship between aquatic vegetation and the propagule bank in shallow lakes. Freshwater Biology, 57(3), 666–675. [Google Scholar] [Crossref]
5. Asri, Y., & Eftekhari, T. (1999). Flora and vegetation of Siah-Keshim lagoon. Journal of Environmental Studies, 28, 1–19. [Google Scholar] [Crossref]
6. Bakker, E. S., Sarneel, J. M., Gulati, R. D., Liu, Z., & Donk, E. (2013). Restoring macrophyte diversity in shallow temperate lakes: Biotic versus abiotic constraints. Hydrobiologia, 710(1), 23–37. [Google Scholar] [Crossref]
7. Bamidele, J. F., & Nyamali, B. (2008). Ecological studies of the Ossiomo river with reference to the macrophytic vegetation. Research Journal Botany, 3(1), 29–34. [Google Scholar] [Crossref]
8. Barko, J. W., Gunnison, D., & Carpenter, S. R. (1991). Sediment interactions with submerged macrophyte growth and community dynamics. Aquatic Botany, 41, 41–65. [Google Scholar] [Crossref]
9. Blindow, I., Hargeby, A., & Hilt, S. (2014). Facilitation of clear-water conditions in shallow lakes by macrophytes: Differences between charophyte and angiosperm dominance. Hydrobiologia, 737(1), 99–110. [Google Scholar] [Crossref]
10. Buchan, L. A. J., & Padilla, D. K. (2000). Predicting the likelihood of Eurasian watermilfoil presence in lakes: A macrophyte monitoring tool. Ecological Applications, 10(5), 1442–1455. [Google Scholar] [Crossref]
11. Camporeale, C., & Ridolfi, L. (2006). Riparian vegetation distribution induced by river flow variability: A stochastic approach. Water Resources Research, 42(10), W10415. https://doi.org/10.1029/2006WR004933 [Google Scholar] [Crossref]
12. Canfield, D., Langeland, K., Linda, S., & Haller, W. (1985). Relations between water transparency and maximum depth of macrophyte colonization in lakes. Journal of Aquatic Plant Management, 23, 25–28. [Google Scholar] [Crossref]
13. Carpenter, S. R., & Lodge, D. M. (1986). Effects of submerged macrophytes on ecosystem processes. Aquatic Botany, 26(3-4), 341–370. [Google Scholar] [Crossref]
14. Castella, E., Richardot-Coulet, M., Roux, C., & Richoux, P. (1984). Macro-invertebrates as descriptors of morphological and hydrological types of aquatic ecosystems abandoned by the Rhone River. Hydrobiologia, 119(3), 219–226. [Google Scholar] [Crossref]
15. Chakraborty, A., Jha, B. C., & Bhakat, R. K. (2008). Diversity and impact of macrophytes in Bandardaha Beel, Murshidabad, West Bengal. Indian Journal of Environmental & Ecoplan, 15(1-2), 331–335. [Google Scholar] [Crossref]
16. Chambers, P. A., DeWreede, R. E., Irlandi, E. A., & Vandermeulen, H. (1999). Management issues in aquatic macrophyte ecology: A Canadian perspective. Canadian Journal of Botany, 77(3), 471–487. [Google Scholar] [Crossref]
17. Chandra, G., Bhattacharji, I., Ghosh, A., & Chatterji, S. N. (2008). Mosquito control by larvivorous fishes—A review. Indian Journal of Medical Research, 127(1), 13–27. [Google Scholar] [Crossref]
18. Chen, J., Cao, T., Zhang, X., Xi, Y., Ni, L., & Jeppesen, E. (2016). Differential photosynthetic and morphological adaptations to low light affect depth distribution of two submerged macrophytes in lakes. Scientific Reports, 6, 34028. https://doi.org/10.1038/srep34028 [Google Scholar] [Crossref]
19. Choudhury, M. I., Urrutia-Cordero, P., Zhang, H., Ekvall, M. K., Medeiros, L. R., & Hansson, L. A. (2019). Charophytes collapse beyond a critical warming and brownification threshold in shallow lake systems. Science of the Total Environment, 661, 148–154. [Google Scholar] [Crossref]
20. Clarke, S. J., & Wharton, G. (2001). Sediment nutrient characteristics and aquatic macrophytes in lowland English rivers. Science of the Total Environment, 266(1-3), 103–112. [Google Scholar] [Crossref]
21. Clayton, J., & Edwards, T. (2006). Aquatic plants as environmental indicators of ecological condition in New Zealand lakes. Hydrobiologia, 570(1), 147–151. [Google Scholar] [Crossref]
22. Cook, C. D. K., & Urmi-König, K. (1984). A revision of the genus Hydrilla (Hydrocharitaceae). Aquatic Botany, 17(1), 1–10. [Google Scholar] [Crossref]
23. Cronk, J. K., & Fennessy, M. S. (2001). Wetland Plants: Biology and Ecology. CRC Press/Lewis Publishers. [Google Scholar] [Crossref]
24. Dai, Y., Jia, C., Liang, W., Hu, S. H., & Wu, Z. B. (2012). Effects of the submerged macrophyte Ceratophyllum demersum on restoration of a eutrophic waterbody and its optimal coverage. Ecological Engineering, 40, 113–116. [Google Scholar] [Crossref]
25. Daspute-Taur, A. B., Thete-Jadhav, R. G., Jadhav, S. L., Shingadgaon, S. S., & Chavan, B. L. (2018a). An application of floating constructed wetland reactor to phytoremediation of sewage. International Research Journal of Natural and Applied Sciences, 5(2), 136–144. [Google Scholar] [Crossref]
26. Daspute-Taur, A. B., Thete-Jadhav, R. G., Jadhav, S. L., Shingadgaon, S. S., & Chavan, B. L. (2018b). The use of a floating constructed wetland reactor for the phytoremediation of sewage. International Research Journal of Natural and Applied Sciences, 5(2), 136–144. [Google Scholar] [Crossref]
27. del Pozo, R., Fernandez-Alaez, C., & Fernandez-Alaez, M. (2011). The relative importance of natural and anthropogenic effects on community composition of aquatic macrophytes in Mediterranean ponds. Marine and Freshwater Research, 62(1), 101–109. [Google Scholar] [Crossref]
28. Dennison, W. C., Orth, R. J., Moore, K. A., Stevenson, J. C., Carter, V., Kollar, S., Bergstrom, P. W., & Batiuk, R. A. (1993). Assessing water quality with submersed aquatic vegetation. BioScience, 43(2), 86–94. [Google Scholar] [Crossref]
29. Devi Beenakumari, N., & Sharma, M. B. (2004). Life form analysis of the macrophytes of the Loktak Lake, Manipur, India. In A. Arvindkumar (Ed.), Biodiversity and Diversity (pp. 19–23). A.P.H. Corporation. [Google Scholar] [Crossref]
30. Dhote, S., & Dixit, S. (2009). Water quality improvement through macrophytes—A review. Environmental Monitoring and Assessment, 152(1-4), 149–153. [Google Scholar] [Crossref]
31. Edmondson, W. T. (1959). Fresh Water Ecology (2nd ed.). John Wiley & Sons, Inc. [Google Scholar] [Crossref]
32. Estlander, S., Horppila, J., Olin, M., & Nurminen, L. (2017). Should I stay or should I go? The diurnal behaviour of plant-attached zooplankton in lakes with different water transparency. Journal of Limnology, 76(2), 253–260. https://doi.org/10.4081/jlimnol.2017.1564 [Google Scholar] [Crossref]
33. Fassett, N. C. (2000). A Manual of Aquatic Plants. Agrobios (India). [Google Scholar] [Crossref]
34. Franklin, P., Dunbar, M., & Whitehead, P. (2008). Flow controls on lowland river macrophytes: A review. Science of the Total Environment, 400(1-3), 369–378. [Google Scholar] [Crossref]
35. Freitas, A., & Thomaz, S. M. (2011). Inorganic carbon storage may limit the development of submerged macrophytes in habitats of the Paraná River Basin. Acta Limnologica Brasiliensia, 23(1), 57–62. [Google Scholar] [Crossref]
36. Ghahreman, A., & Attar, F. (2003). The Anzali Wetland: A critical ecological and floristic study. Journal of Environmental Studies (Special Issue on Anzali Lagoon), 28, 1–38. (Published in Persian with an English summary). [Google Scholar] [Crossref]
37. Guisan, A., Edwards, T. C., & Hastie, T. (2002). Generalized linear and generalized additive models in studies of species distributions: Setting the scene. Ecological Modelling, 157(2-3), 89–100. [Google Scholar] [Crossref]
38. Guo, L. (2007). Ecology—Doing battle with the green monster of Taihu Lake. Science, 317(5842), 1166. [Google Scholar] [Crossref]
39. Haynes, R. R., & Holm-Nielsen, L. B. (1985). A generic treatment of Potamogeton L. (Potamogetonaceae). Nordic Journal of Botany, 5(6), 577–592. [Google Scholar] [Crossref]
40. Horppila, J., & Nurminen, L. (2001). Effects of different macrophyte growth forms on sediment and P resuspension in a shallow lake. Hydrobiologia, 545(1), 167–175. [Google Scholar] [Crossref]
41. Jadhav, S. L., & Babare, M. G. (2025a). Investigation of emergent aquatic macrophytes in the Chhatrapati Sambhajinagar District. International Journal of Research Publication and Reviews, 6(3), 7322–7329. [Google Scholar] [Crossref]
42. Jadhav, S. L., & Babare, M. G. (2025b). Bioconcentration Factor (BCF), Bioaccumulation Factor (BAF), Metal Enrichment Factor (MEF) and Metal Translocation Factor (MTF) for the submerged macrophyte species Ceratophyllum demersum. International Journal of Innovative Research in Technology, 11(11), 1903–1913. [Google Scholar] [Crossref]
43. Jadhav, S. L., & Babare, M. G. (2025c). Screening of Azolla caroliniana for metal related bio-potential factors. International Journal of Innovative Science and Research Technology, 10(4), 143–154. [Google Scholar] [Crossref]
44. Jadhav, S. L., & Babare, M. G. (2025d). Survey of emergent aquatic macrophytes in the District of Dharashiv of Maharashtra. International Journal of Recent Advances in Multidisciplinary Research, 12(4), 11042–11048. [Google Scholar] [Crossref]
45. Jadhav, S. L., & Babare, M. G. (2025e). Bioabsorption, bioconcentration, metal enrichment and metal transfer factors of toxic metals in Arundo donax L. International Journal of Novel Research and Development, 10(4), e619–e629. [Google Scholar] [Crossref]
46. Jadhav, S. L., & Babare, M. G. (2025f). Investigation of emergent aquatic macrophytes in Jalna District of Maharashtra. International Journal of Creative Research Thoughts, 13(4), 1907–1919. [Google Scholar] [Crossref]
47. Jadhav, S. L., & Babare, M. G. (2025g). Bio potential factors of the aquatic plant species Ceratophyllum submersum: BCF, BAF, MEF, and MTF. International Journal of Novel Research and Development, 10(4), f771–f785. [Google Scholar] [Crossref]
48. Jadhav, S. L., & Babare, M. G. (2025h). Survey of submerged aquatic macrophytes in Beed District, Maharashtra. International Journal of Science, Architecture, Technology and Environment, 2(5), 287–300. [Google Scholar] [Crossref]
49. Jadhav, S. L. (2025i). Survey of submerged aquatic macrophytes in the District of Dharashiv of Maharashtra. International Journal of Advanced Scientific and Technical Research, 2(1), 194–203. https://doi.org/10.26808/RS.2025.87c51a [Google Scholar] [Crossref]
50. Jalili, A., Hamzehee, B., Asri, Y., Shirvani, A., Khushnivis, M., & Pak Parvar, M. (2009). Identifying dominant ecological vegetation patterns in Anzali Wetland and their significance for ecosystem management. Journal of Sciences, University of Tehran, 35(1), 51–57. [Google Scholar] [Crossref]
51. Jarvela, J. (2005). Effect of submerged flexible vegetation on flow structure and resistance. Journal of Hydrology, 307(1-4), 233–241. [Google Scholar] [Crossref]
52. Jeppesen, E., Søndergaard, M., & Christoffersen, K. (Eds.). (1997). The structuring role of submerged macrophytes in lakes. Springer-Verlag. [Google Scholar] [Crossref]
53. Jeppesen, E., Søndergaard, M., Meerhoff, M., Lauridsen, T. L., & Jensen, J. P. (2007). Shallow lake restoration by nutrient loading reduction: Some recent findings and challenges ahead. Hydrobiologia, 584(1), 239–252. [Google Scholar] [Crossref]
54. Jeppesen, E., Søndergaard, M., & Christoffersen, K. (1998). The Structuring Role of Submerged Macrophytes in Lakes. Springer. [Google Scholar] [Crossref]
55. Jin, S., Ibrahim, M., Muhammad, S., Khan, S., & Li, G. (2020). Light intensity effects on the growth and biomass production of submerged macrophytes in different water strata. Arabian Journal of Geosciences, 13, 1–7. https://doi.org/10.1007/s12517-020-05924-4 [Google Scholar] [Crossref]
56. Kalff, J. (2001). Limnology. Prentice Hall. [Google Scholar] [Crossref]
57. Karlsson, J., Byström, P., Ask, J., Ask, P., Persson, L., & Jansson, M. (2009). Light limitation of nutrient-poor lake ecosystems. Nature, 460(7254), 506–509. https://doi.org/10.1038/nature08179 [Google Scholar] [Crossref]
58. Kenneth, A. L. (1996). Hydrilla verticillata (L.F.) Royle (Hydrocharitaceae), "The perfect aquatic weed". Castanea, 61(3), 293–304. [Google Scholar] [Crossref]
59. Kibria, G., Lau, T. C., & Wu, R. (2012). Innovative 'Artificial Mussels' technology for assessing spatial and temporal distribution of metals in Goulburn-Murray catchments waterways, Victoria, Australia: Effects of climate variability (dry vs. wet years). Environmental International, 50, 38–46. [Google Scholar] [Crossref]
60. Kristensen, P., Søndergaard, M., & Jeppesen, E. (1992). Resuspension in a shallow eutrophic lake. Hydrobiologia, 228(2), 101–109. [Google Scholar] [Crossref]
61. Lacoul, P., & Freedman, B. (2006). Environmental influences on aquatic plants in freshwater ecosystems. Environmental Reviews, 14(2), 89–136. https://doi.org/10.1139/a06-001 [Google Scholar] [Crossref]
62. Laishram, K. D., & Sharma, M. (2007). Life form analysis and biological spectrum of the macrophytes of the Laisoipat lake, Manipur. Indian Journal of Environmental & Ecoplan, 14(1-2), 153–159. [Google Scholar] [Crossref]
63. Les, D. H. (1988). The origin and affinities of the Ceratophyllaceae. Taxon, 37(2), 345–367. [Google Scholar] [Crossref]
64. Liu, H., Zhou, W., Li, X. W., Chu, Q. S., Tang, N., Shu, B. Z., Liu, G. H., & Xing, W. (2020). How many submerged macrophyte species are needed to improve water clarity and quality in Yangtze floodplain lakes? Science of the Total Environment, 724, 138267. [Google Scholar] [Crossref]
65. Liu, Z. W., Hu, J. R., Zhong, P., Zhang, X. F., Ning, J. J., Larsen, S. E., Chen, D. Y., Gao, Y. M., He, H., & Jeppesen, E. (2018). Successful restoration of a tropical shallow eutrophic lake: Strong bottom-up but weak top-down effects recorded. Water Research, 146, 88–97. [Google Scholar] [Crossref]
66. Lougheed, V. L., Crosbie, B., & Chow-Fraser, P. (2001). Primary determinants of macrophyte community structure in 62 marshes across the Great Lakes basin: Latitude, land use, and water quality effects. Canadian Journal of Fisheries and Aquatic Sciences, 58(8), 1603–1612. [Google Scholar] [Crossref]
67. Manorama, T. D., & Sharma, M. (2007). Studies on the distribution of macrophytes of Yenapat Lake, Bishnupur, Manipur. Indian Journal of Environmental & Ecoplan, 14(1-2), 311–318. [Google Scholar] [Crossref]
68. Mao, Z., Gu, X., Cao, Y., Luo, J. H., Zeng, Q. F., Chen, H. H., & Jeppesen, E. (2020). Pelagic energy flow supports the food web of a shallow lake following a dramatic regime shift driven by water level changes. Science of the Total Environment, 756, 143642. [Google Scholar] [Crossref]
69. Meshram, C. B. (2003). Macro-invertebrate fauna of Lake Wadali, Amravati, Maharashtra. Journal of Aquatic Biology, 18(2), 47–50. [Google Scholar] [Crossref]
70. Middelboe, A. L., & Markager, S. (1997). Depth limits and minimum light requirements of freshwater macrophytes. Freshwater Biology, 37(3), 553–568. [Google Scholar] [Crossref]
71. Mirishi, M. V. (1954). Studies on the hydrophytes of Nagpur. Journal of the Indian Botanical Society, 33, 298–308. [Google Scholar] [Crossref]
72. Naqinezhad, A. R., & Hosseinzadeh, F. (2014). Plant diversity of Fereydoonkenar International wetland, Mazandaran. Journal of Plant Researches (Iranian Journal of Biology), 27(2), 320–335. [Google Scholar] [Crossref]
73. Narasimha, R. K., & Banargee, G. (2016). The diversity and distribution of macrophytes in Nagaramtank, situated in the Warangal district of Telangana state. International Journal of Fisheries and Aquatic Studies, 4(1), 270–275. [Google Scholar] [Crossref]
74. Narayana, J., & Somashekhar, R. K. (2002). Macrophytes diversity in relation to water quality investigation on river Cauvery. In A. Kumar (Ed.), Ecology and conservation of lakes, reservoirs and rivers (pp. 86–113). A.B.D. Publishers. [Google Scholar] [Crossref]
75. Nepf, H., Ghisalberti, M., White, B., & Murphy, E. (2007). Retention time and dispersion associated with submerged aquatic canopies. Water Resources Research, 43(4), W04422. [Google Scholar] [Crossref]
76. Nieder, W. C., Barnaba, E., Findlay, S. E. G., Hoskins, S., Holochuck, N., & Blair, E. A. (2004). Distribution and abundance of submerged aquatic vegetation and Trapa natans in the Hudson River Estuary. Journal of Coastal Research, 20(Special Issue 41), 150–161. [Google Scholar] [Crossref]
77. O’Farrell, I., Izaguirre, I., Chaparro, G., Unrein, F., Sinistro, R., Pizarro, H., Rodriguez, P., Pinto, P. D., Lombardo, R., & Tell, G. (2011). Water level as the main driver of the alternation between a free-floating plant and a phytoplankton dominated state: A long-term study in a floodplain lake. Aquatic Sciences, 73(2), 275–287. [Google Scholar] [Crossref]
78. O’Hare, J. M., O’Hare, M. T., Gurnell, A. M., Dunbar, M. J., Scarlett, P. M., & Laizé, C. (2011). Physical constraints on the distribution of macrophytes linked with flow and sediment dynamics in British rivers. River Research and Applications, 27(6), 671–683. [Google Scholar] [Crossref]
79. Olsen, S., Chan, F., Li, W., Zhao, S. T., Søndergaard, M., & Jeppesen, E. (2015). Strong impact of nitrogen loading on submerged macrophytes and algae: A long-term mesocosm experiment in a shallow Chinese lake. Freshwater Biology, 60(7), 1525–1536. [Google Scholar] [Crossref]
80. Paillisson, J. M., & Marion, L. (2011). Water level fluctuations for managing excessive plant biomass in shallow lakes. Ecological Engineering, 37(2), 241–247. [Google Scholar] [Crossref]
81. Pennak, R. W. (1978). Fresh Water Invertebrates of the United States (2nd ed.). Wiley Interscience Publishers, John Wiley & Sons. [Google Scholar] [Crossref]
82. Pieczynska, F., & Ozimek, T. (1976). Ecological significance of lake macrophytes. International Journal of Ecology and Environmental Sciences, 2, 115–128. [Google Scholar] [Crossref]
83. Qin, B., Zhang, Y., Gao, G., Zhu, G., Gong, Z., & Dong, B. (2014). Key factors affecting lake ecological restoration. Progress in Geography, 33(7), 918–924. https://doi.org/10.1007-6301(2014)33:7& lt;918:HPSTHF>2.0.TX;2-9 [Google Scholar] [Crossref]
84. Rascio, N. (2002). The underwater life of secondarily aquatic plants: Challenges and solutions. Critical Reviews in Plant Sciences, 21(5), 401–427. [Google Scholar] [Crossref]
85. Rejmankova, E. (2011). The role of macrophytes in wetland ecosystems. Journal of Ecology and Field Biology, 34(4), 333–345. [Google Scholar] [Crossref]
86. Riazi, B. (1996). Siah-Keshim, The Protected Area of Anzali Wetland. Department of the Environment Press. [Google Scholar] [Crossref]
87. Rooney, V. J. N., Girwat, M. W., & Savin, M. C. (2005). Links between phytoplankton and bacterial community dynamics in a coastal marine environment. Microbial Ecology, 49(1), 163–175. [Google Scholar] [Crossref]
88. Rossier, O. (1995). Spatial and temporal separation of littoral zone fishes of Lake Geneva (Switzerland–France). Hydrobiologia, 300-301(1), 321–327. [Google Scholar] [Crossref]
89. Scheffer, M., Hosper, S. H., Meijer, M. L., Moss, B., & Jeppesen, E. (1993). Alternative equilibria in shallow lakes. Trends in Ecology & Evolution, 8(8), 275–279. [Google Scholar] [Crossref]
90. Schelske, C. L., Lowe, E. F., Kenney, W. F., Battoe, L. E., Brenner, M., & Coveney, M. F. (2010). How anthropogenic darkening of Lake Apopka induced benthic light limitation and forced the shift from macrophyte to phytoplankton dominance. Limnology and Oceanography, 55(3), 1201–1212. [Google Scholar] [Crossref]
91. Sculthorpe, C. D. (1967). The Biology of Aquatic Vascular Plants. Edward Arnold. [Google Scholar] [Crossref]
92. Sen, D. N., & Chetterjee, U. N. (1959). Ecological studies on aquatic and swampy vegetation of Gorakhpur. A survey. Agra University Journal of Research (Science), 8(1), 17–27. [Google Scholar] [Crossref]
93. Shingadgaon, S. S., & Chavan, B. L. (2018a). The potential for zinc absorption in Water Lettuce (Pistia Stratiotes, Linn). International Journal of Science and Research, 7(3), 1497–1504. [Google Scholar] [Crossref]
94. Shingadgaon, S. S., & Chavan, B. L. (2018b). Zinc uptake potential of Eichhornia crassipes at various concentrations. International Journal for Research in Applied Science & Engineering Technology, 6(3), 3472–3476. [Google Scholar] [Crossref]
95. Shingadgaon, S. S., & Chavan, B. L. (2018c). Zinc uptake potential in Cyperus esculentus L. International Journal of Application or Innovation in Engineering & Management, 7(6), 47–58. [Google Scholar] [Crossref]
96. Shingadgaon, S. S., & Chavan, B. L. (2019). Assessment of Bioaccumulation Factor (BAF), Bioconcentration Factor (BCF), Translocation Factor (TF), and Metal Enrichment Factor (MEF) capabilities of aquatic macrophyte species exposed to metal-contaminated wastewater. International Journal of Innovative Research in Science, Engineering and Technology, 8(1), 329–347. [Google Scholar] [Crossref]
97. Short, F. T., & Coles, R. G. (1999). Global seagrass research: an update. Aquatic Botany, 63(3-4), 185-191. [Google Scholar] [Crossref]
98. Sondergaard, M., Johansson, L. S., Lauridsen, T. L., Jørgensen, T. B., Liboriussen, L., & Jeppesen, E. (2010). Submerged macrophytes as indicators of the ecological quality of lakes. Freshwater Biology, 55(5), 893–908. [Google Scholar] [Crossref]
99. Son, D., Cho, K.-H., & Lee, E. J. (2017). The potential habitats of two submerged macrophytes, Myriophyllum spicatum and Hydrilla verticillata in the river ecosystems, South Korea. Knowledge and Management of Aquatic Ecosystems, 418, 58. [Google Scholar] [Crossref]
100. Sousa, W. (2011). Hydrilla verticillata (Hydrocharitaceae), a recent invader threatening Brazil’s freshwater environments: A review of the extent of the problem. Hydrobiologia, 669(1), 1–20. [Google Scholar] [Crossref]
101. Srivastava, A. K., Dixit, S. N., & Singh, S. K. (1987). Aquatic angiosperm of Gorakhpur. Indian Journal of Forestry, 10(1), 46–57. [Google Scholar] [Crossref]
102. Stahr, K. J., & Kaemingk, M. A. (2017). An evaluation of emergent macrophytes and their role in supporting various aquatic species. Lake and Reservoir Management, 33(3), 314–323. [Google Scholar] [Crossref]
103. Thete-Jadhav, R. G., Daspute, A. B., Jadhav, S. L., Shingadgaon, S. S., & Chavan, B. L. (2018a). Sewage treatment by Floating Constructed Wetland Reactor System. Journal of Emerging Technologies and Innovative Research, 5(12), 406–413. [Google Scholar] [Crossref]
104. Thete-Jadhav, R. B., Daspute-Taur, A. B., Jadhav, S. L., Shingadgaon, S. S., & Chavan, B. L. (2018b). Performance of Floating Constructed Wetland Reactor with Cyperus esculentus L. macrophyte at different concentrations of sewage. International Journal of Application or Innovation in Engineering & Management, 7(2), 6–11. [Google Scholar] [Crossref]
105. Tonapi, G. T. (1980). Fresh Water Animals of India, An Ecological Approach. Oxford and IBH Publishing Co. [Google Scholar] [Crossref]
106. Van Geest, G. J., Coops, H., Scheffer, M., & Nes, E. (2007). Long transients near the ghost of a stable state in eutrophic shallow lakes with fluctuating water levels. Ecosystems, 10(1), 36–46. [Google Scholar] [Crossref]
107. Vardayan, L., & Ingole, B. S. (2006). Studies on heavy metal accumulation in aquatic macrophytes from seven lakes: Armenia and Caranbolim. Internet Collection, 1–27. [Google Scholar] [Crossref]
108. Wang, H. J., Wang, H. Z., Liang, X. M., & Wu, S. K. (2014). Total phosphorus thresholds for regime shifts are nearly equal in subtropical and temperate shallow lakes with moderate depths and areas. Freshwater Biology, 59(12), 1659–1671. [Google Scholar] [Crossref]
109. Wang, Y., Pedersen, M. W., Alsos, I. G., De Sanctis, B., Racimo, F., Prohaska, A., Coissac, E., Owens, H. L., Merkel, M. K. F., Fernandez-Guerra, A., Rouillard, A., Lammers, Y., Alberti, A., Denoeud, F., Money, D., Ruter, A. H., McColl, H., Larsen, N. K., Cherezova, A. A., & Willerslev, E. (2021). Late Quaternary dynamics of Arctic biota from ancient environmental genomics. Nature, 600(7887), 86–92. https://doi.org/10.1038/s41586-021-04016-x [Google Scholar] [Crossref]
110. Wood, K. A., O’Hare, M. T., McDonald, C., Searle, K. R., Daunt, F., & Stillman, R. A. (2017). Herbivore regulation of plant abundance in aquatic ecosystems. Biological Reviews, 92(2), 1128–1141. [Google Scholar] [Crossref]
111. Wu, D., & Hua, Z. (2014). The effect of vegetation on sediment resuspension and phosphorus release under hydrodynamic disturbance in shallow lakes. Ecological Engineering, 69, 55–62. [Google Scholar] [Crossref]
112. Yu, Q., Wang, H. Z., Li, Y., Shao, J. C., Liang, X. M., Jeppesen, E., & Wang, H. J. (2015). Effects of high nitrogen concentrations on the growth of submerged macrophytes at moderate phosphorus concentrations. Water Research, 83, 385–395. [Google Scholar] [Crossref]
113. Yu, Y. X., Li, Y., Wang, H. J., Wu, X. D., Zhang, M., Wang, H. Z., Hamilton, D. P., & Jeppesen, E. (2021). Submerged macrophyte restoration with artificial light-emitting diodes: A mesocosm experiment. Ecotoxicology and Environmental Safety, 228, 113044. https://doi.org/10.1016/j.ecoenv.2021.113044 [Google Scholar] [Crossref]
114. Zahed, S., Asri, Y., Yousefi, M., & Moradi, A. (2013). The flora, life forms, and chorotypes of plants in Selkeh Lagoon, Northern Iran. Journal of Plant Researches (Iranian Journal of Biology), 26(3), 301–310. [Google Scholar] [Crossref]
115. Zhang, Y. L., Liu, X. H., Qin, B. Q., Shi, K., Deng, J. M., & Zhou, Y. Q. (2016). Aquatic vegetation in response to increased eutrophication and degraded light climate in eastern Lake Taihu: Implications for lake ecological restoration. Scientific Reports, 6, 23867. [Google Scholar] [Crossref]
116. Zhang, Y., Jeppesen, E., Liu, X., Qin, B., Shi, K., Zhou, Y., Thomaz, S. M., & Deng, J. M. (2017). Global loss of aquatic vegetation in lakes. Earth-Science Reviews, 173, 259–265. https://doi.org/10.1016/j.earscirev.2017.08.013 [Google Scholar] [Crossref]
117. • Daspute-Taur, A. B., Thete-Jadhav, R. G., Jadhav, S. L., Shingadgaon, S. S., & Chavan, B. L. (2018a). *An application of floating constructed wetland reactor to phytoremediation of sewage*. IRJNAS, 5(2), 136–144. [Google Scholar] [Crossref]
118. • Daspute-Taur, A. B., Thete-Jadhav, R. G., Jadhav, S. L., Shingadgaon, S. S., & Chavan, B. L. (2018b). *The use of a floating constructed wetland reactor for the phytoremediation of sewage*. IRJNAS, 5(2), 136–144. [Google Scholar] [Crossref]
119. • Jadhav, S. L. (2025i). *Survey of submerged aquatic macrophytes in the District of Dharashiv of Maharashtra*. IJSATR, 2(1), 194–203. [https://doi.org/10.26808/RS.2025.87c51a] (https://doi.org/10.26808/RS.2025.87c51a) [Google Scholar] [Crossref]
120. • Jadhav, S. L., & Babare, M. G. (2025a). *Investigation of emergent aquatic macrophytes in the Chhatrapati Sambhajinagar District*. IJRP\&R, 6(3), 7322–7329. [Google Scholar] [Crossref]
121. • Jadhav, S. L., & Babare, M. G. (2025b). *BCF, BAF, MEF and MTF for Ceratophyllum demersum*. IJIRT, 11(11), 1903–1913. [Google Scholar] [Crossref]
122. • Jadhav, S. L., & Babare, M. G. (2025c). *Screening of Azolla caroliniana for metal related bio-potential factors*. IJISRT, 10(4), 143–154. [Google Scholar] [Crossref]
123. • Jadhav, S. L., & Babare, M. G. (2025d). *Survey of emergent aquatic macrophytes in the District of Dharashiv of Maharashtra*. IJRAMR, 12(4), 11042–11048. [Google Scholar] [Crossref]
124. • Jadhav, S. L., & Babare, M. G. (2025e). *Bioabsorption, bioconcentration, metal enrichment and metal transfer factors in Arundo donax L.* IJNRD, 10(4), e619–e629. [Google Scholar] [Crossref]
125. • Jadhav, S. L., & Babare, M. G. (2025f). *Investigation of emergent aquatic macrophytes in Jalna District of Maharashtra*. IJCRT, 13(4), 1907–1919. [Google Scholar] [Crossref]
126. • Jadhav, S. L., & Babare, M. G. (2025g). *Bio potential factors of Ceratophyllum submersum: BCF, BAF, MEF, and MTF*. IJNRD, 10(4), f771–f785. [Google Scholar] [Crossref]
127. • Jadhav, S. L., & Babare, M. G. (2025h). *Survey of submerged aquatic macrophytes in Beed District, Maharashtra*. IJSATE, 2(5), 287–300. [Google Scholar] [Crossref]
128. • Shingadgaon, S. S., & Chavan, B. L. (2018a). *Zinc absorption in Water Lettuce (Pistia stratiotes)*. IJSR, 7(3), 1497–1504. [Google Scholar] [Crossref]
129. • Shingadgaon, S. S., & Chavan, B. L. (2018b). *Zinc uptake potential of Eichhornia crassipes*. IJRASET, 6(3), 3472–3476. [Google Scholar] [Crossref]
130. • Shingadgaon, S. S., & Chavan, B. L. (2018c). *Zinc uptake potential in Cyperus esculentus L.* IJAEM, 7(6), 47–58. [Google Scholar] [Crossref]
131. • Shingadgaon, S. S., & Chavan, B. L. (2019). *Assessment of BAF, BCF, TF, and MEF of aquatic macrophytes*. IJIRSET, 8(1), 329–347. [Google Scholar] [Crossref]
132. REFERENCES [Google Scholar] [Crossref]
133. A D Adoni. Workbook on limnology. Prathibha Publication, 1985, C-10, 6 Gouri Nagar, Sagar-470003. [Google Scholar] [Crossref]
134. C D K Cook. Aquatic Plant Book, 2nd Edition. SPB Academic Publishing, 1996, New York. [Google Scholar] [Crossref]
135. I. H. Chung and S. S. Jeng. Hevy metal pollution in the Ta-Tu River. Bulletin of the Institute of Zoology, Academy of Science 1974; 13, 67-73. [Google Scholar] [Crossref]
136. Asmita B Daspute-Taur, Renuka G. Thete-Jadhav, S.L. Jadhav, Shankar S. Shingadgaon, B.L. Chavan. An application of floating constructed wetland reactor to phytoremediation of sewage. International Research Journal of Natural and Applied Sciences 2018;5(2), 136-144. [Google Scholar] [Crossref]
137. KU Garad, RD Gore, and SP Gaikwad. A Synoptic Account of the Flora of Solapur District, Maharashtra, India. Biodiversity Data Journal, 2015, DOI: 10.3897/BDJ.3.e4282. [Google Scholar] [Crossref]
138. OP Gupta. Weedy Aquatic Plants: Their Utility, Menace, and Management. Agrobios, Jodhpur, India, 2001. p. 273. [Google Scholar] [Crossref]
139. AN Henry, V Chitra and NP Balakrishnan, Flora of Tamil Nadu, India. Botanical Survey of India, Southern Circle, Coimbatore, 1989; 1(3), 1-171. [Google Scholar] [Crossref]
140. SK Jain, RR Rao. A Handbook of Field and Herbarium Methods. Today and Tomorrow, 1976. New Delhi. [Google Scholar] [Crossref]
141. K Subramanyam, Aquatic Angiosperms. Botanical Monograph (3). 1962. CSIR, New Delhi. [Google Scholar] [Crossref]
142. SR Yadav and MM Sardesai. Flora of Kolhapur District. Shivaji Univesity, 2002. Kolhapur. [Google Scholar] [Crossref]
143. RK Narasimha and G Banargee. The diversity and distribution of macrophytes in Nagaramtank, located in the Warangal district of Telangana state. International Journal of Fisheries and Aquatic Studies 2016; 4(1), 270-275. [Google Scholar] [Crossref]
144. J Narayana and RK Somashekar. Macrophytic diversity in relation to water quality in the River Cauvery. Ecology and Conservation of Lakes, Reservoirs, and Rivers, 2002. ABD Publishers in Jaipur, India. [Google Scholar] [Crossref]
145. RN Mandal, AK Datta, N Sarangi and PK Mukhopadhya. A review on the diversity of aquatic macrophytes as food and feed components for herbivorous fish. Indian Journal of Fisheries. 2010, 57(3), 65-73. [Google Scholar] [Crossref]
146. JI Nirmal Kumar, H Soni, RN Kumar and I Bhatt. The role of macrophytes in the phytoremediation of heavy metal-contaminated water and sediments in the Pariyej Community Reserve, Gujarat, India. Turkish Journal of Fisheries and Aquatic Sciences,2008, 8, 193-200. [Google Scholar] [Crossref]
147. MT Philipose. Current trends in weed control in fish culture water across Asia and Far East. FAO Fish Report, 44(5), 25-52. [Google Scholar] [Crossref]
148. A Sharma and PK Singhal. Impact of floating and emergent vegetation on the trophic status of a trophical lake:The macrophytes and physico-chemical status. J Env Biol., 1988, 9(3), 303-311. [Google Scholar] [Crossref]
149. SS Shingadgaon and BL Chavan. Evaluation of Bioaccumulation Factor (BAF), Bioconcentration Factor (BCF), Translocation Factor (TF) and Metal Enrichment Factor (MEF) Abilities of Aquatic Macrophyte Species Exposed to Metal Contaminated Wastewater. International Journal of Innovative Research in Science, Engineering and Technology, 2019, 8 (1), 329-347. [Google Scholar] [Crossref]
150. SS Shingadgaon and BL Chavan. Zinc Uptake Potential of Eichhornia Crassipes at Various Concentrations. International Journal for Research in Applied Science & Engineering Technology, 2018, 6(III), 3472-3476. [Google Scholar] [Crossref]
151. SS Shingadgaon and BL Chavan. Zinc Uptake Potential in Water Lettuce (Pistia Stratiotes, Linn). International Journal of Science and Research. 2016, 1497-1504. [Google Scholar] [Crossref]
152. SS Shingadgaon and BL Chavan. Zinc Uptake Potential in Cyperous esculentus, Linn. Innovation in Engineering & Management (IJAIEM). 2018, 7(6), 47-58. [Google Scholar] [Crossref]
153. KJ Stahr and MA Kaemingk. An assessment of emergent macrophytes and their utilization by various aquatic taxa. Lake and Reservoir Management, 2017, 33(3), p. 314-323. [Google Scholar] [Crossref]
154. WR. World Resources report. 2000, USA. [Google Scholar] [Crossref]
155. WR. World Resources. 2001, UK. [Google Scholar] [Crossref]
156. RG Wetzel. The importance of scientific foundations in constructed wetlands. Constructed Wetlands for Water Quality Improvement CRC Press, Boca Raton, FL: Lewis Publishers, Inc. 1993, p. 3-7. [Google Scholar] [Crossref]
Metrics
Views & Downloads
Similar Articles
- Methane Emissions from Municipal Solid Waste - Case Study in Cai Rang District, Can Tho City, Vietnam
- Youth Activism, Intentional Integration of Policies to Raise Awareness on Climate Change Action among the Youth
- Breathing Spaces: Environmental & User Experience in Dhanmondi and Zigatola Multistoried Apartments, Dhaka, Bangladesh
- Effects of Solid Waste Disposal on Soil Quality in Makurdi Metropolis, Benue State, Nigeria
- Environmental Impact of Artisanal and Small-Scale Gold Mining in Borgu Local Government Area