Emerging Biologic Therapies in Autoimmune Diseases: Focus on Pemphigus Vulgaris, Generalized Myasthenia Gravis, and Psoriasis

Authors

Asha Nandabaram

Department of Pharmacology, Malla Reddy College of Pharmacy, Affiliated to Osmania University, Hyderabad (India)

Poojitha Kalvala

Department of Pharmacology, Malla Reddy College of Pharmacy, Affiliated to Osmania University, Hyderabad (India)

Lakshmi Manisha Rajaputana

Department of Pharmacology, Malla Reddy College of Pharmacy, Affiliated to Osmania University, Hyderabad (India)

Bhavani Bachu

Department of Pharmacology, Malla Reddy College of Pharmacy, Affiliated to Osmania University, Hyderabad (India)

Muvvala Sudhakar

Department of Pharmacology, Malla Reddy College of Pharmacy, Affiliated to Osmania University, Hyderabad (India)

Article Information

DOI: 10.51244/IJRSI.2025.120800197

Subject Category: Medical Sciences

Volume/Issue: 12/8 | Page No: 2204-2212

Publication Timeline

Submitted: 2025-09-04

Accepted: 2025-09-10

Published: 2025-09-19

Abstract

Biologic therapies have transformed the management of autoimmune diseases by targeting key immune pathways with precision, reducing dependence on broad immunosuppression. This review explores advances in monoclonal antibody–based therapies across three representative autoimmune conditions: pemphigus vulgaris (PV), generalized myasthenia gravis (gMG), and psoriasis. In PV, B-cell depletion with rituximab has become the preferred first-line therapy, achieving durable remission and steroid-sparing outcomes. In gMG, complement inhibitors (eculizumab, ravulizumab, zilucoplan) and neonatal Fc receptor (FcRn) antagonists (efgartigimod, rozanolixizumab) provide rapid, clinically meaningful improvements in refractory patients. In psoriasis, therapies targeting the IL-23/IL-17 axis (guselkumab, risankizumab, bimekizumab) have achieved unprecedented levels of skin clearance and durability. Safety, accessibility, and biomarker-driven personalization remain challenges, while future directions include antigen-specific cell therapies, bispecific antibodies, and oral biologic mimetics. Collectively, these advances highlight the transformative role of biologics in autoimmune disease and the trajectory toward precision immunotherapy.

Keywords

Biologics, Monoclonal antibodies, Pemphigus vulgaris, Myasthenia gravis, Psoriasis, Autoimmune diseases, FcRn inhibitors, IL-23 inhibitors

Downloads

References

1. Lee, J. J., & Ballow, M. (2010). Monoclonal antibodies and fusion proteins and their complications: Targeting B cells in autoimmune diseases. Journal of Allergy and Clinical Immunology, 125(4), 814–820. [Google Scholar] [Crossref]

2. Bachu, B., Padhy, S., Manisha, R. L., Nandabaram, A., Vummarao, T., & Sudhakar, M. (2019). Understanding psoriasis: A comprehensive review of its causes and treatments. Frontier Journal of Pharmaceutical Sciences and Research, 2, 69–72. [Google Scholar] [Crossref]

3. Joly, P., Maho-Vaillant, M., Prost-Squarcioni, C., et al. (2017). First-line rituximab combined with short-term prednisone versus prednisone alone for pemphigus (Ritux 3): A prospective, multicentre, parallel-group, open-label randomised trial. The Lancet, 389(10083), 2031–2040. [Google Scholar] [Crossref]

4. Werth, V. P., Joly, P., Mimouni, D., et al. (2021). Rituximab versus mycophenolate mofetil in patients with pemphigus vulgaris (PEMPHiX trial). New England Journal of Medicine, 384(24), 2295–2305. [Google Scholar] [Crossref]

5. Joly, P., Mouquet, H., Roujeau, J. C., et al. (2024). A single cycle of rituximab for the treatment of severe pemphigus (Ritux 3 long-term outcomes). Journal of the American Academy of Dermatology, 90(2), 340–349. [Google Scholar] [Crossref]

6. Hebert, V., Murrell, D. F., Werth, V. P., et al. (2021). Rilzabrutinib, an oral Bruton’s tyrosine kinase inhibitor, in pemphigus vulgaris (Phase 2). The Lancet, 397(10289), 255–265. [Google Scholar] [Crossref]

7. PRNewswire. (2022). Sanofi and Principia announce results of PEGASUS phase 3 study of rilzabrutinib in pemphigus vulgaris [Press release]. [Google Scholar] [Crossref]

8. Howard, J. F. Jr., Utsugisawa, K., Benatar, M., et al. (2017). Safety and efficacy of eculizumab in anti-acetylcholine receptor antibody-positive refractory generalized myasthenia gravis (REGAIN): A phase 3, randomised, double-blind, placebo-controlled, multicentre study. The Lancet Neurology, 16(12), 976–986. [Google Scholar] [Crossref]

9. Muppidi, S., Utsugisawa, K., Benatar, M., et al. (2019). Long-term safety and efficacy of eculizumab in generalized myasthenia gravis. Neurology, 92(21), e2261–e2273. [Google Scholar] [Crossref]

10. Kulkarni, R., Howard, J. F., Nowak, R. J., et al. (2022). Ravulizumab in patients with anti-acetylcholine receptor antibody-positive generalized myasthenia gravis (CHAMPION-MG): A randomised, double-blind, placebo-controlled, phase 3 trial. The Lancet Neurology, 21(6), 526–536. [Google Scholar] [Crossref]

11. Howard, J. F. Jr., Bril, V., Vu, T., et al. (2021). Efgartigimod in generalized myasthenia gravis (ADAPT trial). The Lancet Neurology, 20(7), 526–536. [Google Scholar] [Crossref]

12. Mantegazza, R., Wolfe, G. I., Muppidi, S., et al. (2023). Rozanolixizumab in generalized myasthenia gravis (MycarinG): A phase 3 randomised, double-blind, placebo-controlled trial. The Lancet Neurology, 22(5), 421–432. [Google Scholar] [Crossref]

13. Patwa, H. S., Bril, V., Muppidi, S., et al. (2023). Zilucoplan in patients with generalized myasthenia gravis (RAISE): A phase 3 randomised, double-blind, placebo-controlled trial. The Lancet Neurology, 22(5), 433–443. [Google Scholar] [Crossref]

14. Gordon, K. B., Blauvelt, A., Papp, K. A., et al. (2018). Phase 3 trials of risankizumab in moderate-to-severe plaque psoriasis (UltIMMa-1 and UltIMMa-2). The Lancet, 392(10148), 650–661. [Google Scholar] [Crossref]

15. Reich, K., Armstrong, A. W., Foley, P., et al. (2019). Efficacy and safety of guselkumab, an IL-23 inhibitor, compared with secukinumab, an IL-17 inhibitor, in moderate-to-severe psoriasis (ECLIPSE): Results from a phase 3, randomised controlled trial. The Lancet, 394(10201), 831–839. [Google Scholar] [Crossref]

16. Mease, P. J., Rahman, P., Gottlieb, A. B., et al. (2020). Guselkumab in patients with active psoriatic arthritis: A randomized, double-blind, placebo-controlled, phase 3 trial. The Lancet, 395(10230), 1126–1136. [Google Scholar] [Crossref]

17. Warren, R. B., Blauvelt, A., Bagel, J., et al. (2021). Bimekizumab versus adalimumab in plaque psoriasis (BE SURE trial). New England Journal of Medicine, 385(2), 130–141. [Google Scholar] [Crossref]

18. Reich, K., Papp, K. A., Blauvelt, A., et al. (2021). Bimekizumab versus secukinumab in plaque psoriasis (BE RADIANT trial). New England Journal of Medicine, 385(2), 142–152. [Google Scholar] [Crossref]

19. Reich, K., Warren, R. B., Lebwohl, M., et al. (2022). Long-term efficacy and safety of bimekizumab in patients with plaque psoriasis: Results from BE BRIGHT extension study. British Journal of Dermatology, 187(5), 663–672. [Google Scholar] [Crossref]

20. Reich, K., Papp, K. A., Blauvelt, A., Tyring, S., Vanaclocha, F., Kingo, K., Ziv, M., et al. (2017). Tildrakizumab versus placebo or etanercept for chronic plaque psoriasis (reSURFACE 1 and reSURFACE 2): Results from two randomised controlled, phase 3 trials. The Lancet, 390(10091), 276–288. [Google Scholar] [Crossref]

21. Menter, A., Strober, B. E., Kaplan, D. H., et al. (2020). Joint AAD–NPF guidelines of care for the management of psoriasis with biologics. Journal of the American Academy of Dermatology, 82(6), 1445–1486. [Google Scholar] [Crossref]

22. Armstrong, A. W., & Read, C. (2020). Pathophysiology, clinical presentation, and treatment of psoriasis: A review. JAMA, 323(19), 1945–1960. [Google Scholar] [Crossref]

23. Bugaut, H., & Aractingi, S. (2021). Major role of the IL-17/23 axis in psoriasis supports the development of new targeted therapies. Frontiers in Immunology, 12, 621956. [Google Scholar] [Crossref]

24. Yang, K., Oak, A. S. W., & Elewski, B. E. (2021). Use of IL-23 inhibitors for the treatment of plaque psoriasis and psoriatic arthritis: A comprehensive review. American Journal of Clinical Dermatology, 22(2), 173–192. [Google Scholar] [Crossref]

25. Camela, E., Potestio, L., Ruggiero, A., Ocampo-Garza, S. S., Fabbrocini, G., & Megna, M. (2022). Towards personalized medicine in psoriasis: Current progress. Psoriasis (Auckland), 12, 231–250. [Google Scholar] [Crossref]

26. Sarabia, S., Ranjith, B., Koppikar, S., & Wijeratne, D. T. (2022). Efficacy and safety of JAK inhibitors in the treatment of psoriasis and psoriatic arthritis: A systematic review and meta-analysis. BMC Rheumatology, 6, 57. [Google Scholar] [Crossref]

27. Schön, M. P. (2019). Adaptive and innate immunity in psoriasis and other inflammatory disorders. Frontiers in Immunology, 10, 1764. [Google Scholar] [Crossref]

28. Chen, L., Deshpande, M., Grisotto, M., et al. (2020). Skin expression of IL-23 drives psoriasis and psoriatic arthritis development in mice. Scientific Reports, 10, 10269. [Google Scholar] [Crossref]

29. World Health Organization. (2016). Global report on psoriasis. Geneva: WHO. [Google Scholar] [Crossref]

30. Bachu, B., Rajaputana, L. M., Palle, A., Sushma, R., Nuguri, S. K., Teja, P., Padala, S., & Padhy, S. (2024). Formulation and evaluation of ointment from hydro-alcoholic leaf extract of Cassia auriculata for psoriasis. International Journal of Research in Pharmacology & Pharmacotherapeutics, 13(3), 342–349. https://doi.org/10.61096/ijrpp.v13.iss3.2024.342-349 [Google Scholar] [Crossref]

Metrics

Views & Downloads

Similar Articles