Logging Data-Driven Geomechanical Parameter Estimation Using Advanced Machine Learning Techniques

Authors

Osaki Lawson-Jack

Department of Physics and Geology, Federal University Otuoke, Bayelsa State (Nigeria)

Oghonyon Rorome

Department of Geology, University of Port Harcourt, Rivers State (Nigeria)

Article Information

DOI: 10.51244/IJRSI.2025.120800242

Subject Category: Geophysics

Volume/Issue: 12/9 | Page No: 2738-2749

Publication Timeline

Submitted: 2025-07-31

Accepted: 2025-08-13

Published: 2025-10-02

Abstract

The most commonly used methods of conventional geomechanical parameters estimation which rely on costly, sparse laboratory tests and empirical correlations based on just a few well logs are linked to uncertainties and spatial gaps. This study reveals an innovative data-driven model, which incorporates Advanced Machine Learning techniques to precisely and efficiently estimate key geomechanical properties based directly on collected well-logging data. The techniques include, Deep Learning Architecture (DL), Deep Neural Network (DNN) and Artificial Neural Network (ANN). The machine learning application ensures a huge boost to yielding high prediction accuracies and that of running continuous and high-resolution profiles of geomechanical properties along the wellbore. This method is fast, and has low-cost geomechanical characterization that is vital to optimal drilling, hydraulic fracturing design, reservoir management, and subsurface integrity assessment, resulting in improved operating safety and efficiency. The estimated geomechanical parameters include elastic properties (young’s modulus and poisson’s ratio) and rock’s strength (unconfined compressive stress), while the artificial neutral network technique was applied to estimate the geomechanical parameters in the oil wells of Akata, Agbada and Benin Formations in Bonny Island, Rivers State.

Keywords

Logging Data-Driven, Geomechanical Parameter Estimation, Advanced Machine Learning, Comparative Analysis of Techniques, Geomechanical Properties.

Downloads

References

1. Askaripour, M., Saeidi, A., Mercier-Langevin, P., & Rouleau, A. (2022). A review of relationship between texture characteristic and mechanical properties of rock. Geotechnics, 2(1), 262-296. [Google Scholar] [Crossref]

2. Azarafza, M., Hajialilue Bonab, M., & Derakhshani, R. (2022). A deep learning method for the prediction of the index mechanical properties and strength parameters of marlstone. Materials, 15(19), 6899. [Google Scholar] [Crossref]

3. Sanei, M., Ramezanzadeh, A., & Delavar, M. R. (2023). Applied machine learning-based models for predicting the geomechanical parameters using logging data. Journal of Petroleum Exploration and Production Technology, 13(12), 2363-2385. [Google Scholar] [Crossref]

4. Bankole, S. I., Schrank, E., & Osterloff, P. L. (2014). Palynostratigraphy, palaeoclimates and palaeodepositional environments of the Miocene aged Agbada Formation in the Niger Delta, Nigeria. Journal of African Earth Sciences, 95, 41-62. [Google Scholar] [Crossref]

5. Bhatt, D., Patel, C., Talsania, H., Patel, J., Vaghela, R., Pandya, S., & Ghayvat, H. (2021). CNN variants for computer vision: History, architecture, application, challenges and future scope. Electronics, 10(20), 2470. [Google Scholar] [Crossref]

6. Caetano, I., Santos, L., & Leitão, A. (2020). Computational design in architecture: Defining parametric, generative, and algorithmic design. Frontiers of Architectural Research, 9(2), 287-300. [Google Scholar] [Crossref]

7. Davy, P., Darcel, C., Le Goc, R., & Mas Ivars, D. (2018). Elastic properties of fractured rock masses with frictional properties and power law fracture size distributions. Journal of Geophysical Research: Solid Earth, 123(8), 6521-6539. https://doi.org/10.1029/2017JB015329 [Google Scholar] [Crossref]

8. Diab, A. I., Sanuade, O., & Radwan, A. E. (2023). An integrated source rock potential, sequence stratigraphy, and petroleum geology of (Agbada-Akata) sediment succession, Niger delta: application of well logs aided by 3D seismic and basin modeling. Journal of Petroleum Exploration and Production Technology, 13(1), 237-257. [Google Scholar] [Crossref]

9. Endo, T. (2023). Analysis of Conventional Feature Learning Algorithms and Advanced Deep Learning Models. Journal of Robotics Spectrum, 1, 001-012. [Google Scholar] [Crossref]

10. Erickson, B. J., & Kitamura, F. (2021). Magician’s corner: 9. Performance metrics for machine learning models. Radiology: Artificial Intelligence, 3(3), e200126. https://doi.org/10.1148/ryai.2021200126 [Google Scholar] [Crossref]

11. Guo, Q., He, Z., & Wang, Z. (2023). Prediction of monthly average and extreme atmospheric temperatures in Zhengzhou based on artificial neural network and deep learning models. Frontiers in Forests and Global Change, 6, 1249300. [Google Scholar] [Crossref]

12. Heidarzadeh, S., Saeidi, A., Lavoie, C., & Rouleau, A. (2021). Geomechanical characterization of a heterogenous rock mass using geological and laboratory test results: a case study of the Niobec Mine, Quebec (Canada). SN Applied Sciences, 3, 1-20. [Google Scholar] [Crossref]

13. Isah, A., Arif, M., Hassan, A., Mahmoud, M., & Iglauer, S. (2022). Fluid–rock interactions and its implications on EOR: Critical analysis, experimental techniques and knowledge gaps. Energy Reports, 8, 6355-6395. [Google Scholar] [Crossref]

14. Kadhim, Z. S., Abdullah, H. S., & Ghathwan, K. I. (2022). Artificial Neural Network Hyperparameters Optimization: A Survey. Int. J. Online Biomed. Eng., 18(15), 59-87. [Google Scholar] [Crossref]

15. Kalantari, S., Baghbanan, A., & Hashemalhosseini, H. (2019). An analytical model for estimating rock strength parameters from small-scale drilling data. Journal of Rock Mechanics and Geotechnical Engineering, 11(1), 135-145. [Google Scholar] [Crossref]

16. Kufel, J., Bargieł-Łączek, K., Kocot, S., Koźlik, M., Bartnikowska, W., Janik, M., & Gruszczyńska, K. (2023). What is machine learning, artificial neural networks and deep learning?—Examples of practical applications in medicine. Diagnostics, 13(15), 2582. [Google Scholar] [Crossref]

17. Li, H., & Yang, M. (2024). Study on unconfined compressive strength and deformation characteristics of chlorine saline soil. Scientific Reports, 14(1), 1478. [Google Scholar] [Crossref]

18. Li, S., Hu, J., Amann, F., Li, L., Liu, H., Shi, S., & Hamdi, P. (2022). A multifunctional rock testing system for rock failure analysis under different stress states: Development and application. Journal of Rock Mechanics and Geotechnical Engineering, 14(5), 1531-1544. https://doi.org/10.1016/j.jrmge.2021.12.017 [Google Scholar] [Crossref]

19. Li, Z., Li, H., & Meng, L. (2023). Model compression for deep neural networks: A survey. Computers, 12(3), 60. https://doi.org/10.3390/computers12030060 [Google Scholar] [Crossref]

20. Lin, P., Wei, P., Wang, C., Kang, S., & Wang, X. (2021). Effect of rock mechanical properties on electromagnetic radiation mechanism of rock fracturing. Journal of Rock Mechanics and Geotechnical Engineering, 13(4), 798-810. [Google Scholar] [Crossref]

21. Liu, H., & Abbeel, P. (2020). Hybrid discriminative-generative training via contrastive learning. arXiv preprint arXiv:2007.09070. https://doi.org/10.48550/arXiv.2007.09070 [Google Scholar] [Crossref]

22. Liu, H., Ren, Y. L., Li, X., Hu, Y. X., Wu, J. P., Li, B., & Fang, W. K. (2022). Rock thin-section analysis and identification based on artificial intelligent technique. Petroleum Science, 19(4), 1605-1621. [Google Scholar] [Crossref]

23. Livieris, I. E. (2018). Improving the classification efficiency of an ANN utilizing a new training methodology. In Informatics (Vol. 6, No. 1, p. 1). MDPI. https://doi.org/10.3390/informatics6010001 [Google Scholar] [Crossref]

24. Lutz, M. P., & Zimmerman, R. W. (2021). The effect of pore shape on the Poisson ratio of porous materials. Mathematics and Mechanics of Solids, 26(8), 1191-1203. [Google Scholar] [Crossref]

25. Madhiarasan, M., & Louzazni, M. (2022). Analysis of artificial neural network: architecture, types, and forecasting applications. Journal of Electrical and Computer Engineering, 2022(1), 5416722. https://doi.org/10.1155/2022/5416722 [Google Scholar] [Crossref]

26. Mahdi, D. S., & Alrazzaq, A. A. (2023). Rock mechanical properties: A review of experimental tests and prediction approaches. Iraqi Journal of Oil and Gas Research (IJOGR), 3(1), 106-115. [Google Scholar] [Crossref]

27. Małkowski, P., Niedbalski, Z., & Balarabe, T. (2021). A statistical analysis of geomechanical data and its effect on rock mass numerical modeling: a case study. International Journal of Coal Science and Technology, 8(2), 312-323. [Google Scholar] [Crossref]

28. Millán, M. A., Galindo, R., & Alencar, A. (2021). Application of artificial neural networks for predicting the bearing capacity of shallow foundations on rock masses. Rock Mechanics and Rock Engineering, 54(9), 5071-5094. [Google Scholar] [Crossref]

29. Montesinos López, O. A., Montesinos López, A., & Crossa, J. (2022). Fundamentals of artificial neural networks and deep learning. In Multivariate statistical machine learning methods for genomic prediction (pp. 379-425). Cham: Springer International Publishing. [Google Scholar] [Crossref]

30. Obasohan, J. N., Igbokwe, J. I., & Ojanikele, W. A. (2021). Mapping and Analysis of Coastal Erosion Vulnerability along Bonny Island Coastline, Rivers State Using Satellite Remote Sensing. International Journal of Engineering Science and Computing. [Google Scholar] [Crossref]

31. Ogoro, M. (2014). Spatio–Temporal Changes in the Geomorphic Shoreline of Bonny Island. Journal of Research in Humanities and Social Science, 2(11), 75-80. [Google Scholar] [Crossref]

32. Qiang, Z., Yasin, Q., Golsanami, N., & Du, Q. (2020). Prediction of reservoir quality from log-core and seismic inversion analysis with an artificial neural network: A case study from the Sawan Gas Field, Pakistan. Energies, 13(2), 486. [Google Scholar] [Crossref]

33. Saikia, P., Baruah, R. D., Singh, S. K., & Chaudhuri, P. K. (2020). Artificial Neural Networks in the domain of reservoir characterization: A review from shallow to deep models. Computers & Geosciences, 135, 104357. https://doi.org/10.1016/j.cageo.2019.104357 [Google Scholar] [Crossref]

34. Salman, S., & Liu, X. (2019). Overfitting mechanism and avoidance in deep neural networks. arXiv preprint arXiv:1901.06566. https://doi.org/10.48550/arXiv.1901.06566 [Google Scholar] [Crossref]

35. Samek, W., Montavon, G., Lapuschkin, S., Anders, C. J., & Müller, K. R. (2021). Explaining deep neural networks and beyond: A review of methods and applications. Proceedings of the IEEE, 109(3), 247-278. [Google Scholar] [Crossref]

36. Sewak, M., Sahay, S. K., & Rathore, H. (2020). An overview of deep learning architecture of deep neural networks and autoencoders. Journal of Computational and Theoretical Nanoscience, 17(1), 182-188. [Google Scholar] [Crossref]

37. Smys, S., Chen, J. I. Z., & Shakya, S. (2020). Survey on neural network architectures with deep learning. Journal of Soft Computing Paradigm (JSCP), 2(03), 186-194. [Google Scholar] [Crossref]

38. Yan, B., Wang, P., Ren, F., Guo, Q., & Cai, M. (2020). A review of mechanical properties and constitutive theory of rock mass anisotropy. Arabian journal of geosciences, 13, 1-16. [Google Scholar] [Crossref]

39. Yang, X., Shih, S. M., Fu, Y., Zhao, X., & Ji, S. (2022). Your vit is secretly a hybrid discriminative-generative diffusion model. arXiv preprint arXiv:2208.07791. https://doi.org/10.48550/arXiv.2208.07791 [Google Scholar] [Crossref]

40. Zoorabadi, M., & Muralha, J. (2025). Shear Strength of Rock Discontinuities with Emphasis on the Basic Friction Angle Based on a Compiled Database. Geotechnics, 5(3), 48. [Google Scholar] [Crossref]

Metrics

Views & Downloads

Similar Articles