Synthesis of Metal (II) Complexes of Co, Cu and Ni with Organic Ligand (Maleic Acid) and Their Antioxidant Activities
Authors
Department pharmaceutical chemistry, University of Maiduguri, Maiduguri (Nigeria)
Department pharmaceutical chemistry, University of Maiduguri, Maiduguri (Nigeria)
Department pharmaceutical chemistry, University of Maiduguri, Maiduguri (Nigeria)
Department pharmaceutical chemistry, University of Maiduguri, Maiduguri (Nigeria)
Article Information
DOI: 10.51244/IJRSI.2025.120800331
Subject Category: Pharmaceutics
Volume/Issue: 12/9 | Page No: 3668-3680
Publication Timeline
Submitted: 2025-09-01
Accepted: 2025-09-08
Published: 2025-10-13
Abstract
Complexes of Co, Ni and Cu with maleic acid as ligand were synthesized using reported procedure and characterized using UV spectrometry. The purity of the complexes was monitored and analyzed using solubility, melting point test and the complexes were evaluated for anti-oxidant activities against 1,1-diphenyl-2-picrylhydraxyl(DPPH) free radicals. All the complexes are of good yield, they are of different colors, partially soluble in organic solvent and soluble in DMF. The result was analyzed and presented as mean± SEM. The complex of Co, Ni and Cu at the concentration of 100ug/ml, 50ug/ml, 25ug/ml and 12.5ug/ml respectively shows less scavenging activity compared to the standard (vitamin C) at all concentration. The EC50 result shows that all the complexes have less activity compared to the standard (Vit C.) but still showing notable antioxidant capacity. On the bases of the above studies, an octahedral has been proposed for the complexes.
Keywords
meliac acid, Co(II), Ni(II), Cu(II), Metal complexes, DPPH, Antioxidant activity, coordination chemistry.
Downloads
References
1. Abu-Dief AM, Mohamed IMA. A review on versatile applications of transition metal complexes incorporating Schiff bases. Beni-Suef Univ J Basic Appl Sci 2015;4(2):119–133. [Google Scholar] [Crossref]
2. Amudat, L. (2010). Synthesis, Characterization and Biological Studies, thesis submitted to the Department of Chemistry, Faculty of Science in Partial Fulfillment of the requirement for the Degree of Doctor of philosophy (Ph.D.) in chemistry, Ilorin, Nigeria. [Google Scholar] [Crossref]
3. Beraldo H and Gambino D .( 2004 ) The wide pharmacological versassstility of semicarbazones, thiosemicarbazones and their metal complexes. Mini. Rev. Med. Chem.;4:31–39 [Google Scholar] [Crossref]
4. Chang LW.( 1990) The neurotoxicology and pathology of organomercury, organolead, and organotin. J. Toxicol. Sci.;15:125–151. [Google Scholar] [Crossref]
5. Chitrapriya N, Joseph J. Antioxidant and antimicrobial studies of novel transition metal complexes of quinoline-based ligands. Spectrochim Acta A 2014;127:61–70. [Google Scholar] [Crossref]
6. Felthouse, T.R., Burnett, J. C., Horrell, B., & Mummey, M. J. (2000). “Maleic Amhydride, Maleic acid, and Fumeric acid.” Inkirk-othmer encyclopedia of chemical technology (5th ed., vol 15, pp. 1-38). [Google Scholar] [Crossref]
7. Genkinger, J. M., Platz, E. A., Hoffman, S. C., Comstock, G. W., & Helzlsouer, K. J. (2004). "Fruit, Vegetable, and Antioxidant Intake and All-Cause, Cancer, and Cardiovascular Disease Mortality in a Community-Dwelling Population in Washington County, Maryland."American Journal of Epidemiology, 160(12), 1223–1233. [Google Scholar] [Crossref]
8. Golding, B.T. (1983) Cobalt and Vitamin B12, Ed. Chem. 20, 204-207. [Google Scholar] [Crossref]
9. Halliwell B, Gutteridge JMC. Free Radicals in Biology and Medicine. 5th ed. Oxford: Oxford University Press; 2015. [Google Scholar] [Crossref]
10. Harinath Yapatia, Subba Rao Devinenib, Suresh Chirumamillaa and Seshaiah Kalluru (2015) Inorganic and Analytical Chemistry Division, Sri Venkateswara University, Tirupati 51 75 02 [Google Scholar] [Crossref]
11. Ibrahim, K. B., El-Ansary, A. L., & Refat, M. S. (1995). "Synthesis and Characterization of Cobalt(II), Nickel(II), and Copper(II) Complexes with Maleic Acid Ligands." Transition Metal Chemistry, 20(3), 245–250. DOI: [10.1007/BF00139107](https://doi.org/10.1007/BF00139107) [Google Scholar] [Crossref]
12. Jahangir, M., Kim, H. K., Choi, Y. H., & Verpoorte, R. (2011)."Post-Harvest Changes in Antioxidant Properties of *Agaricus bisporus Mushrooms." Food Chemistry, 128(3), 674678.DOI:[10.1016/j.foodchem.2011.03.087](https://doi.org/10.1016/j.foodchem.2011.03.087) [Google Scholar] [Crossref]
13. Jones, D. L., Darrah, P. R., & Kochian, L. V. (1996)."Critical Evaluation of Organic Acid-Mediated Iron Dissolution in the Rhizosphere and Its Potential Role in Root Iron Uptake." Plant and Soil, 180(1),57–66. DOI: [10.1007/BF00015411](https://doi.org/10.1007/BF00015411) [Google Scholar] [Crossref]
14. Karthikyan, A. R. (1992). Studies on some new complexes of Iron, Cobalt, Nickel and Copper,Thesis submitted to the Department of Chemistry, FacuIty of Science,in partial fulfilment of the requirements for the degree of Doctor of Philosophy(Ph.D) in Chemistry,Cochin University of Science and Technology, Kochi. [Google Scholar] [Crossref]
15. Khaled A. Shennara, Ray J. Butcher b, Frederick T. and Greenaway (2014).Co(II), Cu(II), Mn(II) and Ni(II) complexes of maleic hydrazide DOI: 10.10 16 [Google Scholar] [Crossref]
16. Khan MR, Abourashed EA. Maleic acid derivatives from medicinal plants. In: Leung’s Encyclopedia of Common Natural Ingredients. 3rd ed. John Wiley & Sons; 2010. [Google Scholar] [Crossref]
17. Klaus. D.(2008). “Applications of meleic acid in polymer and coating industries.” Journal of Applied polymer science, *110*(3), 1235-1242. [Google Scholar] [Crossref]
18. Lee JD. Concise Inorganic Chemistry. 5th ed. Oxford: Blackwell Science; 2009. [Google Scholar] [Crossref]
19. Mahmud, J. A., Hasanuzzaman, M., Nahar, K., Rahman, A., Hossain, M. S., & Fujita, M. (2017). Maleic Acid Improves Antioxidant Defense and Chromium Stress Tolerance in *Brassica juncea." Ecotoxicology and Environmental Safety, 144, 216–226. DOI:* [10.1016/j.ecoenv.2017.06.028](https://doi.org/10.1016/j.ecoenv.2017.06.028) [Google Scholar] [Crossref]
20. Martell, A. E., & Calvin, M. (1952). Chemistry of the metal chelate compounds. Prentice-Hall. [Google Scholar] [Crossref]
21. May PM, Linder PW,and Williams DR(1977). Computer simulation of equilibria metal-ion in biofluids: models for the lowolecular-weight complex distribution of calcium(II), magnesium(II), manganese(II), iron(III), copper(II), zinc(II), and lead(II) ions in human blood plasma. J. Chem. Soc., Dalton Trans.; 44:588–595. [Google Scholar] [Crossref]
22. Merck KGaA. (2015). "Malic Acid: Safety Data Sheet (SDS) and Technical Information." Darmstadt, Germany: Merck KGaA. [Google Scholar] [Crossref]
23. Mckenzie, A., & Hoyle,F. (1923). “ The synthesis of racemic malic acid.” Journal of the Chemical society, Transactions, *123*, 1056-1060. DOI: 10. 1039/CT9232301056 [Google Scholar] [Crossref]
24. NadiraW and, Singh HB (2010). Synthesis of metal complexes of antimaleria drugs and in-vitro evaluation of their activity.lnorg.chim.Acta.135:134-137. [Google Scholar] [Crossref]
25. Nevin Turan, Ragip Adigüzel, Kenan Buldurun, Ercan Bursal, 2016. Spectroscopic, Thermal and Antioxidant properties of Novel Mixed Ligand-Metal Complexes Obtained from Saccharinate Complexes and Azo Dye Ligand (mnppa). Int. J. Pharmacol., 12: 92-100. [Google Scholar] [Crossref]
26. Noipa T, Srijaranai S, Tuntulani T and ,Ngeontae W.(2011)New approach for evaluation of the antioxidant capacity based on scavenging DPPH free radical in micelle systems.food Res lnt ;44(3):798-806. [Google Scholar] [Crossref]
27. Ogunniran KO,Ajanaku KO, James OO,Ajani OO, Nwinyi CO,Allansela (2008).Fe(III) and Co(ii) complexes of mixed antibiotics; Synthesis, characterization, antimicrobial potential and their effect on alkaline phosphate activities of selected rat tissues.lnt.J.Phy.sci.3(8):177-282. [Google Scholar] [Crossref]
28. Rajkumar, M., Sandhya, S., Prasad, M. N. V., & Freitas, H. (2012). "Perspectives of Plant-Associated Microbes in Heavy Metal Phytoremediation."Biotechnology Advances, 30(6), 1562–1574. DOI: [10.1016/j.biotechadv.2012.04.011](https://doi.org/10.1016/j.biotechadv.2012.04.011) [Google Scholar] [Crossref]
29. Ramsey, B. L., & Schultz, J. W. (1993)."Aqueous-Phase Isomerization of Maleic to Fumaric Acid for Malic Acid Production." Industrial & Engineering Chemistry Research, 32(8), 1606–1610. [Google Scholar] [Crossref]
30. Ramanaiah M, Goutham Sri S,and Sailaja B (2013). Effect of non ionic micelles on the chemical speciation of binary complexes of Pb(II), Cd(II) and Hg(II) with L-phenylalanine. Chem. Speciation Bioavailability; 25:285–290. [Google Scholar] [Crossref]
31. Schmidbaur, Hubert; Schier, Annette (2013-01-02). "Coordination Chemistry at Carbon: The Patchwork Family Comprising (Ph 3 P) 2 C, (Ph 3 P)C(C 2 H 4 ), and (C 2 H 4 ) 2 C". Angewandte Chemie International Edition. 52 (1): 176–186. The Origin of the Names Malic, Maleic, and Malonic Acid Jensen, William B. J. Chem. Educ. 2007, 84, 924. Abstract [Google Scholar] [Crossref]
32. Shennara KA, Butcher RJ, Greenaway FT. Co(II), Cu(II), Mn(II) and Ni(II) complexes of maleic hydrazide: synthesis, spectroscopic and thermal studies. Inorg Chim Acta 2014;420:46–54. [Google Scholar] [Crossref]
33. Turan N, Adigüzel R, Bursal E. Spectroscopic, thermal and antioxidant properties of mixed ligand-metal complexes derived from saccharinate and azo dye ligands. Int J Pharmacol 2016;12:92–100. [Google Scholar] [Crossref]
34. Valko M, Leibfritz D, Moncol J, Cronin MTD, Mazur M, Telser J. Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell Biol 2007;39(1):44–84. [Google Scholar] [Crossref]
35. Wani, B. A., Bodha, R. H., & Wani, A. H. (2010)."Nutritional and Medicinal Importance of Agaricus bisporus: A Review."African Journal of Agricultural Research, 5(24), 3428–3434. [Google Scholar] [Crossref]
36. West DX, Padhye SB, Sonawane PB (1991). Structure and bonding. Vol. 76. New York (NY): Springer-Verlag; . p. 1–49 [Google Scholar] [Crossref]
37. Zou, X., Zhou, Y., & Yang, S.-T. (2013). “Production of L-malic acid by metabolically engineered Aureobasidiun pullulans from glucose.” Journal of industrial microbiology & Biotechnology,*40*(3-4), 487-495. DOI: 10. 1007/s10295-013-1243-0 [Google Scholar] [Crossref]
Metrics
Views & Downloads
Similar Articles
- Development and Evaluation of Floating Alginate Beads of Esomeprazole
- Determination of pKa Value for Ranolazine and Atenolol Using UV Spectroscopy
- The Science of Sustained-Release Medications
- Development of Proteomics in Clinical Medicine
- Advances on Quinoline Derivatives: A Review of Synthesis and Biological Activities