Relevance of Scanning Electron Microscope and Nuclear Magnetic Resonance Technique in Food Research: A Review

Authors

O. M. M. *Nwadi

Department of Food Science and Technology, Faculty of Agriculture, University of Nigeria, Nsukka (Nigeria)

T. M. Okonkwo

Department of Food Science and Technology, Faculty of Agriculture, University of Nigeria, Nsukka (Nigeria)

Article Information

DOI: 10.51584/IJRIAS.2025.100900055

Subject Category: Food science

Volume/Issue: 10/9 | Page No: 546-556

Publication Timeline

Submitted: 2025-09-13

Accepted: 2025-09-19

Published: 2025-10-15

Abstract

The aim of this review was to investigate the relevance of scanning electron microscope (SEM) and nuclear magnetic resonance (NMR) in research in the food industry. The microstructure of food is affected by food processing. The food components such as proteins, vitamins and starch are usually involved in irreversible changes during processing. The proteins are denatured most times while the water soluble vitamins are lost. A food processor needs to ensure that quality control is put into consideration during production process. Globalization has also made the world a global village whereby processed food products produced in one end of the globe finds its way to another end. Different processing methods affect processed food, hence instrumentation techniques such as the use of SEM and NMR comes in handy. The major limiting factor in their use and installation is cost because they are expensive equipment but have high level of accuracy. SEM and NMR are nondestructive analytical technique. The two Technology have been adopted in the investigation of microstructure of food. SEM has been used to view Salmonella biofilm, interaction between some fish products and the inner part of the packaging material. NMR instrumentation was first used for moisture measurement in foods.

Keywords

Microstructure, nondestructive, instrumentation, Quality control

Downloads

References

1. Alberici, S. G., and Kostal, V. (2015). The scanning electron microscope in food industry: Applications and examples. Workshop Proceedings Electron Microscopy and Imaging Techniques in Food Science - University of Verona, 31–37. [Google Scholar] [Crossref]

2. Ayala-Hernandez, I., Goff, H. D., and Corredig, M. (2008). Interactions Between Milk Proteins and Exopolysaccharides Produced by Lactococcus lactis Observed by Scanning Electron Microscopy. Journal of Dairy Science, 91(7), 2583–2590. [Google Scholar] [Crossref]

3. Barron, U. G., and Butler, F. (2008). Crumb Features Quantification by Cryo-Scanning Electron Microscopy Images. In Bubbles in Food 2: Novelty, Health and Luxury (pp. 89–97). [Google Scholar] [Crossref]

4. Belton, P. S., Colquhoun, I. J., and Hills, B. P. (1993). Applications of NMR to Food Science. Annual Reports on NMR Spectroscopy. https://doi.org/10.1016/S0066-4103(08)60057-5 [Google Scholar] [Crossref]

5. Boiani, M., McLoughlin, P., Auty, M. A. E., FitzGerald, R. J., and Kelly, P. M. (2017). Effects of depleting ionic strength on 31 P nuclear magnetic resonance spectra of micellar casein during membrane separation and diafiltration of skim milk. Journal of Dairy Science. https://doi.org/10.3168/jds.2016-12351 [Google Scholar] [Crossref]

6. Borthakur, P., Boruah, P. K., Sharma, B., and Das, M. R. (2016). 5 - Nanoemulsion: preparation and its application in food industry. In A. M. Grumezescu (Ed.), Emulsions (pp. 153–191). Academic Press. https://doi.org/https://doi.org/10.1016/B978-0-12-804306-6.00005-2 [Google Scholar] [Crossref]

7. Burgain, J., Petit, J., Scher, J., Rasch, R., Bhandari, B., and Gaiani, C. (2017). Surface chemistry and microscopy of food powders. Progress in Surface Science, 92(4), 409 – 429. [Google Scholar] [Crossref]

8. Busquets, R. (2017). Chapter Four - Analysis of Nanomaterials in Food. In R. Busquets (Ed.), Emerging Nanotechnologies in Food Science (pp. 53–80). Elsevier. https://doi.org/https://doi.org/10.1016/B978-0-323-42980-1.00004-2 [Google Scholar] [Crossref]

9. Callaghan, P. T. (2017). NMR Microscopy. In J. C. Lindon, G. E. Tranter, D. W. Koppenaal (Eds.), Encyclopedia of Spectroscopy and Spectrometry (Third Edition) (Third Edit, pp. 154–163). Academic Press. https://doi.org/https://doi.org/10.1016/B978-0-12-803224-4.00227-2 [Google Scholar] [Crossref]

10. Cao, R., Nonaka, A., Komura, F., and Matsui, T. (2015). Application of diffusion ordered-1H-nuclear magnetic resonance spectroscopy to quantify sucrose in beverages. Food Chemistry. https://doi.org/10.1016/j.foodchem.2014.08.105 [Google Scholar] [Crossref]

11. Carneiro, C. da S., Mársico, E. T., Ribeiro, R. de O. R., Conte-Júnior, C. A., Mano, S. B., Augusto, C. J. C., and Oliveira de Jesus, E. F. (2016). Low-Field Nuclear Magnetic Resonance (LF NMR 1H) to assess the mobility of water during storage of salted fish (Sardinella brasiliensis). Journal of Food Engineering. https://doi.org/10.1016/j.jfoodeng.2015.09.010 [Google Scholar] [Crossref]

12. Carosio, M. G. A., Bernardes, D. F., Andrade, F. D., Moraes, T. B., Tosin, G., and Colnago, L. A. (2016). Measuring thermal properties of oilseeds using time domain nuclear magnetic resonance spectroscopy. Journal of Food Engineering. https://doi.org/10.1016/j.jfoodeng.2015.11.004 [Google Scholar] [Crossref]

13. Chen, D.-W., Mo, X., Xiao, J., Zhao, Z., and Wan, P. (2025). Use of nuclear magnetic resonance spectroscopy to identify phospholipids in food: A brief review. Journal of Food Composition and Analysis, 140, 107268. https://doi.org/https://doi.org/10.1016/j.jfca.2025.107268 [Google Scholar] [Crossref]

14. Cheng, S., Wang, X., Li, R., Yang, H., Wang, H., Wang, H., and Tan, M. (2019). Influence of multiple freeze-thaw cycles on quality characteristics of beef semimembranous muscle: With emphasis on water status and distribution by LF-NMR and MRI. Meat Science, 147(March 2018), 44–52. https://doi.org/10.1016/j.meatsci.2018.08.020 [Google Scholar] [Crossref]

15. Corradini, M. G., and McClements, D. J. (2017). Food☆. In Reference Module in Chemistry, Molecular Sciences and Chemical Engineering. Elsevier. https://doi.org/https://doi.org/10.1016/B978-0-12-409547-2.14314-8 [Google Scholar] [Crossref]

16. Dalgleish, D. G., Spagnuolo, P. A., and Douglas Goff, H. (2004). A possible structure of the casein micelle based on high-resolution field-emission scanning electron microscopy. International Dairy Journal, 14(12), 1025–1031. [Google Scholar] [Crossref]

17. Deng, F., Wang, R., Wu, L., and Liu, Y. (2025). Determining the purity of four D-amino acids through mass balance and quantitative nuclear magnetic resonance. Microchemical Journal, 114993. https://doi.org/https://doi.org/10.1016/j.microc.2025.114993 [Google Scholar] [Crossref]

18. Dhowlaghar, N., Bansal, M., Schilling, M. W., and Nannapaneni, R. (2018). Scanning electron microscopy of Salmonella biofilms on various food-contact surfaces in catfish mucus. Food Microbiology, 74, 143–150. [Google Scholar] [Crossref]

19. Diantom, A., Curti, E., Carini, E., Boukid, F., Mattarozzi, M., Vodovotz, Y., Careri, M., and Vittadini, E. (2019). A multi-scale approach for pasta quality features assessment. Lwt, 101(June 2018), 285–292. https://doi.org/10.1016/j.lwt.2018.11.004 [Google Scholar] [Crossref]

20. dos Santos Rodrigues, J. B., de Carvalho, R. J., de Souza, N. T., de Sousa Oliveira, K., Franco, O. L., Schaffner, D., de Souza, E. L., and Magnani, M. (2017). Effects of oregano essential oil and carvacrol on biofilms of Staphylococcus aureus from food-contact surfaces. Food Control, 73(Part B), 1237–1246. [Google Scholar] [Crossref]

21. Farag, M. A., Labib, R. M., Noleto, C., Porzel, A., and Wessjohann, L. A. (2018). NMR approach for the authentication of 10 cinnamon spice accessions analyzed via chemometric tools. LWT - Food Science and Technology, 90(January), 491–498. https://doi.org/10.1016/j.lwt.2017.12.069 [Google Scholar] [Crossref]

22. Farah, J. S., Silva, M. C., Cruz, A. G., and Calado, V. (2018). Differential calorimetry scanning: current background and application in authenticity of dairy products. Current Opinion in Food Science, 22, 88–94. https://doi.org/10.1016/j.cofs.2018.02.006 [Google Scholar] [Crossref]

23. Fellows, P. J. (2017). Extrusion cooking. In Food Processing Technology (pp. 753–780). Elsevier Inc. https://doi.org/10.1016/B978-0-08-100522-4.00017-1 [Google Scholar] [Crossref]

24. Franssen, M. C. R., and Boeriu, C. G. (2014). Chemically modified starch; Allyl and Exopy-Starch derivatives: Their synthesis and characterization. In Starch Polymers. https://doi.org/10.1016/B978-0-444-53730-0.00027-0 [Google Scholar] [Crossref]

25. García-García, A. B., Cambero, M. I., Castejón, D., Escudero, R., and Fernández-Valle, M. E. (2019). Dry cured-ham microestructure: a T NMR relaxometry, SEM and uniaxial tensile test combined study. Food Structure, 19, 100104. [Google Scholar] [Crossref]

26. Gatti, A. M., and Montanari, S. (2018). Chapter 14 - Food Contamination: From Food Degradation to Food-Borne Diseases. In A. M. Grumezescu and A. M. Holban (Eds.), Food Safety and Preservation (pp. 431–456). Academic Press. [Google Scholar] [Crossref]

27. Gresley, A. Le, and Peron, J.-M. R. (2019). A semi-automatic approach to the characterisation of dark chocolate by Nuclear Magnetic Resonance and multivariate analysis. Food Chemistry, 275, 385–389. https://doi.org/https://doi.org/10.1016/j.foodchem.2018.09.089 [Google Scholar] [Crossref]

28. Gu, G. Y., Wang, X., Zhou, H. L., and Liu, B. L. (2018). Progresses of Magnetic Relaxation Switch Sensor in Medical Diagnosis and Food Safety Analysis. Chinese Journal of Analytical Chemistry, 46(8), 1161–1170. https://doi.org/10.1016/S1872-2040(18)61102-8 [Google Scholar] [Crossref]

29. Gudjónsdóttir, M., Romotowska, P. E., Karlsdóttir, M. G., and Arason, S. (2018). Low field nuclear magnetic resonance and multivariate analysis for prediction of physicochemical characteristics of Atlantic mackerel as affected by season of catch, freezing method, and frozen storage duration. Food Research International. https://doi.org/10.1016/j.foodres.2018.08.063 [Google Scholar] [Crossref]

30. Han, N., Mizan, M. F. R., Jahid, I. K., and Ha, S. Do. (2016). Biofilm formation by Vibrio parahaemolyticus on food and food contact surfaces increases with rise in temperature. Food Control, 70, 161–166. [Google Scholar] [Crossref]

31. Hondoh, H., Yamasaki, K., Ikutake, M., and Ueno, S. (2016). Visualization of oil migration in chocolate using scanning electron microscopy-energy dispersive X-ray spectroscopy. Food Structure, 8, 8–15. [Google Scholar] [Crossref]

32. Işbilir, F., Işbilir, İ., Yavaş, S. E., and Güzel, B. C. (2025). Ultrastructure of the intestinal canal in healthy turkeys (Meleagris gallopavo) using light and scanning electron microscopy. Research in Veterinary Science, 193, 105805. https://doi.org/https://doi.org/10.1016/j.rvsc.2025.105805 [Google Scholar] [Crossref]

33. Ishihara, S., Inaoka, T., Nakamura, T., Kimura, K., Sekiyama, Y., and Tomita, S. (2018). Nuclear magnetic resonance- and gas chromatography/mass spectrometry-based metabolomic characterization of water-soluble and volatile compound profiles in cabbage vinegar. Journal of Bioscience and Bioengineering. https://doi.org/10.1016/j.jbiosc.2018.02.003 [Google Scholar] [Crossref]

34. Jackowiak, H., Packa, D., Wiwart, M., and Perkowski, J. (2005). Scanning electron microscopy of Fusarium damaged kernels of spring wheat. International Journal of Food Microbiology, 98(2), 113–123. [Google Scholar] [Crossref]

35. Jafari, M., Koocheki, A., and Milani, E. (2018). Functional effects of xanthan gum on quality attributes and microstructure of extruded sorghum-wheat composite dough and bread. LWT - Food Science and Technology, 89, 551–558. [Google Scholar] [Crossref]

36. James, B. J., and Smith, B. G. (2009). Surface structure and composition of fresh and bloomed chocolate analysed using X-ray photoelectron spectroscopy, cryo-scanning electron microscopy and environmental scanning electron microscopy. LWT - Food Science and Technology, 42(5), 927–937. [Google Scholar] [Crossref]

37. James, B., and Yang, S. W. (2011). Testing meat tenderness using an in situ straining stage with variable pressure scanning electron microscopy. Procedia Food Science, 1, 258–266. [Google Scholar] [Crossref]

38. Jarzębski, M., Bellich, B., Białopiotrowicz, T., Śliwa, T., Kościński, J., and Cesàro, A. (2017). Particle tracking analysis in food and hydrocolloids investigations. Food Hydrocolloids, 68, 90–101. [Google Scholar] [Crossref]

39. Jiao, L., Guo, Y., Chen, J., Zhao, X., and Dong, D. (2018). Detecting volatile compounds in food by open-path Fourier-transform infrared spectroscopy. Food Research International. https://doi.org/https://doi.org/10.1016/j.foodres.2018.11.042 [Google Scholar] [Crossref]

40. Kaláb, M., Allan-Wojtas, P., and Miller, S. S. (1995). Microscopy and other imaging techniques in food structure analysis. Trends in Food Science and Technology. https://doi.org/10.1016/S0924-2244(00)89052-4 [Google Scholar] [Crossref]

41. Kamal, T., Song, Y., Zhang, T., Zhu, B. W., and Tan, M. (2018). Effect of hydrocolloid and processing potentiality on water migration in apple jellies of Yinduqing cultivar. LWT. https://doi.org/10.1016/j.lwt.2018.08.064 [Google Scholar] [Crossref]

42. Kanemaru, T., Hirata, K., Takasu, S. I., Isobe, S. I., Mizuki, K., Mataka, S., and Nakamura, K. I. (2009). A fluorescence scanning electron microscope. Materials Today, 12(Supplement 1), 18–23. [Google Scholar] [Crossref]

43. Karim, M. A., Rahman, M. M., Pham, N. D., and Fawzia, S. (2018). 3 - Food Microstructure as affected by processing and its effect on quality and stability. In S. Devahastin (Ed.), Food Microstructure and Its Relationship with Quality and Stability (pp. 43–57). Woodhead Publishing. [Google Scholar] [Crossref]

44. Kassama, L. S., and Ngadi, M. O. (2005). Pore structure characterization of deep-fat-fried chicken meat. Journal of Food Engineering. https://doi.org/10.1016/j.jfoodeng.2004.04.003 [Google Scholar] [Crossref]

45. Kerr, W. (2016). Implications of Non-Equilibrium States and Glass Transitions in Fried Foods. In Non-Equilibrium States and Glass Transitions in Foods: Processing Effects and Product-Specific Implications. https://doi.org/10.1016/B978-0-08-100309-1.00012-2 [Google Scholar] [Crossref]

46. Kharat, S., Medina-Meza, I. G., Kowalski, R. J., Hosamani, A., C.T., R., Hiregoudar, S., and Ganjyal, G. M. (2019). Extrusion processing characteristics of whole grain flours of select major millets (foxtail, finger, and pearl). Food and Bioproducts Processing, 114, 60–71. [Google Scholar] [Crossref]

47. Klaus, A., Kozarski, M., Vunduk, J., Todorovic, N., Jakovljevic, D., Zizak, Z., Pavlovic, V., Levic, S., Niksic, M., and Van Griensven, L. J. L. D. (2015). Biological potential of extracts of the wild edible basidiomycete mushroom grifola frondosa. Food Research International. https://doi.org/10.1016/j.foodres.2014.11.035 [Google Scholar] [Crossref]

48. Ko, W.-C., and Hsieh, C.-W. (2018). Isotopic-Spectroscopic Technique: Site-Specific Nuclear Isotopic Fractionation Studied by Nuclear Magnetic Resonance (SNIF-NMR). In Modern Techniques for Food Authentication. https://doi.org/10.1016/B978-0-12-814264-6.00010-4 [Google Scholar] [Crossref]

49. Kontominas, M. G., Prodromidis, M. I., Paleologos, E. K., Badeka, A. V., and Georgantelis, D. (2006). Investigation of fish product-metal container interaction using scanning electron microscopy-X-ray microanalysis. Food Chemistry, 98(2), 225–230. [Google Scholar] [Crossref]

50. Laghi, L., Picone, G., and Capozzi, F. (2014). Nuclear magnetic resonance for foodomics beyond food analysis. TrAC - Trends in Analytical Chemistry, 59, 93–102. https://doi.org/10.1016/j.trac.2014.04.009 [Google Scholar] [Crossref]

51. Li, P., Sun, Z., Ma, M., Jin, Y., and Sheng, L. (2018). Effect of microwave-assisted phosphorylation modification on the structural and foaming properties of egg white powder. LWT. https://doi.org/10.1016/j.lwt.2018.06.055 [Google Scholar] [Crossref]

52. Li, T., Rui, X., Wang, K., Jiang, M., Chen, X., Li, W., and Dong, M. (2015). Study of the dynamic states of water and effects of high-pressure homogenization on water distribution in tofu by using low-field nuclear magnetic resonance. Innovative Food Science and Emerging Technologies. https://doi.org/10.1016/j.ifset.2015.03.008 [Google Scholar] [Crossref]

53. Liu, R., Sun, W., Zhang, Y., Huang, Z., Hu, H., and Zhao, M. (2019). Preparation of starch dough using damaged cassava starch induced by mechanical activation to develop staple foods: Application in crackers. Food Chemistry, 271, 284–290. [Google Scholar] [Crossref]

54. Liu, W., and Lanier, T. C. (2015). Combined use of variable pressure scanning electron microscopy and confocal laser scanning microscopy best reveal microstructure of comminuted meat gels. LWT - Food Science and Technology, 62(2), 1027–1033. [Google Scholar] [Crossref]

55. Liu, X., Zhang, T., Xue, Y., and Xue, C. (2019). Changes of structural and physical properties of semi-gel from Alaska pollock surimi during 4 °C storage. Food Hydrocolloids. https://doi.org/10.1016/j.foodhyd.2018.09.011 [Google Scholar] [Crossref]

56. Liu, Y., Liu, D., Wei, G., Ma, Y., Bhandari, B., and Zhou, P. (2018). 3D printed milk protein food simulant: Improving the printing performance of milk protein concentration by incorporating whey protein isolate. Innovative Food Science and Emerging Technologies, 49, 116–126. [Google Scholar] [Crossref]

57. Liu, Z., Zhang, M., and Bhandari, B. (2018). Effect of gums on the rheological, microstructural and extrusion printing characteristics of mashed potatoes. International Journal of Biological Macromolecules, 117, 1179–1187. https://doi.org/10.1016/j.ijbiomac.2018.06.048 [Google Scholar] [Crossref]

58. Lolli, V., and Caligiani, A. (2024). How nuclear magnetic resonance contributes to food authentication: current trends and perspectives. Current Opinion in Food Science, 58, 101200. https://doi.org/https://doi.org/10.1016/j.cofs.2024.101200 [Google Scholar] [Crossref]

59. Lu, N., Zhang, L., Zhang, X., Li, J., Labuza, T. P., and Zhou, P. (2016). Molecular migration in high-protein intermediate-moisture foods during the early stage of storage: Variations between dairy and soy proteins and effects on texture. Food Research International. https://doi.org/10.1016/j.foodres.2016.01.026 [Google Scholar] [Crossref]

60. Mahato, P. L., Weatherby, T., Ewell, K., Jha, R., and Mishra, B. (2024). Scanning electron microscope-based evaluation of eggshell quality. Poultry Science, 103(3), 103428. https://doi.org/https://doi.org/10.1016/j.psj.2024.103428 [Google Scholar] [Crossref]

61. Malongane, F., McGaw, L. J., Nyoni, H., and Mudau, F. N. (2018). Metabolic profiling of four South African herbal teas using high resolution liquid chromatography-mass spectrometry and nuclear magnetic resonance. Food Chemistry. https://doi.org/10.1016/j.foodchem.2018.02.121 [Google Scholar] [Crossref]

62. Mannina, L., Sobolev, A. P., and Viel, S. (2012). Liquid state 1H high field NMR in food analysis. Progress in Nuclear Magnetic Resonance Spectroscopy. https://doi.org/10.1016/j.pnmrs.2012.02.001 [Google Scholar] [Crossref]

63. Manoi, K., and Rizvi, S. S. H. (2010). Physicochemical characteristics of phosphorylated cross-linked starch produced by reactive supercritical fluid extrusion. Carbohydrate Polymers. https://doi.org/10.1016/j.carbpol.2010.03.042 [Google Scholar] [Crossref]

64. Marcone, M. F., Wang, S., Albabish, W., Nie, S., Somnarain, D., and Hill, A. (2013). Diverse food-based applications of nuclear magnetic resonance (NMR) technology. Food Research International, 51(2), 729–747. https://doi.org/10.1016/j.foodres.2012.12.046 [Google Scholar] [Crossref]

65. Martin, A. H., Douglas Goff, H., Smith, A., and Dalgleish, D. G. (2006). Immobilization of casein micelles for probing their structure and interactions with polysaccharides using scanning electron microscopy (SEM). Food Hydrocolloids, 20(6), 817–824. [Google Scholar] [Crossref]

66. Martínez, M. M., Pico, J., and Gómez, M. (2015). Physicochemical modification of native and extruded wheat flours by enzymatic amylolysis. Food Chemistry, 167, 447–453. [Google Scholar] [Crossref]

67. Martínez-Yusta, A., and Guillén, M. D. (2014). Deep-frying. A study of the influence of the frying medium and the food nature, on the lipidic composition of the fried food, using1H nuclear magnetic resonance. Food Research International. https://doi.org/10.1016/j.foodres.2014.05.015 [Google Scholar] [Crossref]

68. Mondal, M. I. H., Yeasmin, M. S., and Rahman, M. S. (2015). Preparation of food grade carboxymethyl cellulose from corn husk agrowaste. International Journal of Biological Macromolecules. https://doi.org/10.1016/j.ijbiomac.2015.04.061 [Google Scholar] [Crossref]

69. Nguyen, T. K., Mondor, M., and Ratti, C. (2018). Shrinkage of cellular food during air drying. Journal of Food Engineering, 230, 8–17. [Google Scholar] [Crossref]

70. Nowacka, M., Rybak, K., Wiktor, A., Mika, A., Boruszewski, P., Woch, J., and Przybysz, K., Witrowa-Rajchert, D. (2018). The quality and safety of food contact materials – paper and cardboard coated with paraffin emulsion. Food Control, 93, 183–190. [Google Scholar] [Crossref]

71. Nwadi, O. M. M., and Okonkwo, T. M. (2020). Investigating the effect of extrusion cooking on microstructure of whole wheat flour using scanning electron microscope. Proceedings of the 44th NIFST Annual Conference, Lagos, 2020, 14th to 15th October, 2020, D’Podium International Event Center, 318 Aromire Avenue, Ikeja, Lagos, pp. 29–30. [Google Scholar] [Crossref]

72. Oh, J. K., Rapisand, W., Zhang, M., Yegin, Y., Min, Y., Castillo, A., Cisneros-Zevallos, L., and Akbulut, M. (2016). Surface modification of food processing and handling gloves for enhanced food safety and hygiene. Journal of Food Engineering, 187, 82–91. [Google Scholar] [Crossref]

73. Ohtsuki, T., Sato, K., Sugimoto, N., Akiyama, H., and Kawamura, Y. (2012). Absolute quantitative analysis for sorbic acid in processed foods using proton nuclear magnetic resonance spectroscopy. Analytica Chimica Acta. https://doi.org/10.1016/j.aca.2012.04.033 [Google Scholar] [Crossref]

74. Ong, L., Dagastine, R. R., Kentish, S. E., and Gras, S. L. (2011). Microstructure of milk gel and cheese curd observed using cryo scanning electron microscopy and confocal microscopy. LWT - Food Science and Technology, 44(5), 1291–1302. [Google Scholar] [Crossref]

75. Otero, L., and Préstamo, G. (2009). Effects of pressure processing on strawberry studied by nuclear magnetic resonance. Innovative Food Science and Emerging Technologies. https://doi.org/10.1016/j.ifset.2009.04.004 [Google Scholar] [Crossref]

76. Park, Y., Oh, I. K., Park, S. W., Ryu, K., and Lee, S. (2019). Elucidation of rheological, microstructural, water mobility, and noodle-making properties of rice flour affected by turanose. Food Chemistry, 276(September 2018), 9–14. https://doi.org/10.1016/j.foodchem.2018.09.168 [Google Scholar] [Crossref]

77. Peters, J. P. C. M., Vergeldt, F. J., Van As, H., Luyten, H., Boom, R. M., and van der Goot, A. J. (2016). Time domain nuclear magnetic resonance as a method to determine and characterize the water-binding capacity of whey protein microparticles. Food Hydrocolloids. https://doi.org/10.1016/j.foodhyd.2015.09.031 [Google Scholar] [Crossref]

78. Philipp, C., Oey, I., Silcock, P., Beck, S. M., and Buckow, R. (2017). Impact of protein content on physical and microstructural properties of extruded rice starch-pea protein snacks. Journal of Food Engineering, 212, 165–173. [Google Scholar] [Crossref]

79. Pramai, P., Abdul Hamid, N. A., Mediani, A., Maulidiani, M., Abas, F., and Jiamyangyuen, S. (2018). Metabolite profiling, antioxidant, and α-glucosidase inhibitory activities of germinated rice: nuclear-magnetic-resonance-based metabolomics study. Journal of Food and Drug Analysis. https://doi.org/10.1016/j.jfda.2016.11.023 [Google Scholar] [Crossref]

80. Proietti, N., Adiletta, G., Russo, P., Buonocore, R., Mannina, L., Crescitelli, A., and Capitani, D. (2018). Evolution of physicochemical properties of pear during drying by conventional techniques, portable-NMR, and modelling. Journal of Food Engineering, 230, 82–98. https://doi.org/10.1016/j.jfoodeng.2018.02.028 [Google Scholar] [Crossref]

81. Ramakrishnan, V., and Luthria, D. L. (2017). Recent applications of NMR in food and dietary studies. In Journal of the Science of Food and Agriculture. https://doi.org/10.1002/jsfa.7917 [Google Scholar] [Crossref]

82. Ramesh Yadav, A., Guha, M., Tharanathan, R. N., and Ramteke, R. S. (2006). Changes in characteristics of sweet potato flour prepared by different drying techniques. LWT - Food Science and Technology, 39(1), 20–26. https://doi.org/10.1016/j.lwt.2004.12.010 [Google Scholar] [Crossref]

83. Rashidinejad, A., Birch, E. J., Hindmarsh, J., and Everett, D. W. (2017). Molecular interactions between green tea catechins and cheese fat studied by solid-state nuclear magnetic resonance spectroscopy. Food Chemistry. https://doi.org/10.1016/j.foodchem.2016.07.179 [Google Scholar] [Crossref]

84. Ray, A., Roberts, J. R., Flavel, R., and Chousalkar, K. K. (2015). Eggshell penetration by Salmonella Typhimurium in table eggs: Examination of underlying eggshell structures by micro-computed tomography and scanning electron microscopy. Food Research International, 78, 34–40. [Google Scholar] [Crossref]

85. Riaz, A., Lei, S., Akhtar, H. M. S., Wan, P., Chen, D., Jabbar, S., Abid, M., Hashim, M. M., and Zeng, X. (2018). Preparation and characterization of chitosan-based antimicrobial active food packaging film incorporated with apple peel polyphenols. International Journal of Biological Macromolecules, 114, 547–555. [Google Scholar] [Crossref]

86. Rodrigues, J. A., Barros, A. S., Carvalho, B., Brandão, T., and Gil, A. M. (2011). Probing beer aging chemistry by nuclear magnetic resonance and multivariate analysis. Analytica Chimica Acta. https://doi.org/10.1016/j.aca.2011.06.042 [Google Scholar] [Crossref]

87. Rovira, S., López, M. B., Ferrandini, E., and Laencina, J. (2011). Hot topic: Microstructure quantification by scanning electron microscopy and image analysis of goat cheese curd. Journal of Dairy Science, 94(3), 1091–1097. [Google Scholar] [Crossref]

88. Rozali, S. N. M., Milani, E. A., Deed, R. C., and Silva, F. V. M. (2017). Bacteria, mould and yeast spore inactivation studies by scanning electron microscope observations. International Journal of Food Microbiology, 263, 17–25. [Google Scholar] [Crossref]

89. Schmitt, R. (2014). Scanning Electron Microscope. CIRP Encyclopedia of Production Engineering, 1085–1089. [Google Scholar] [Crossref]

90. Shi, C., He, Y., Ding, M., Wang, Y., and Zhong, J. (2018). Nanoimaging of food proteins by atomic force microscopy. Part I: Components, imaging modes, observation ways, and research types. Trends in Food Science and Technology, August 2017, 0–1. https://doi.org/10.1016/j.tifs.2018.11.028 [Google Scholar] [Crossref]

91. Shrestha, A. K., Blazek, J., Flanagan, B. M., Dhital, S., Larroque, O., Morell, M. K., and Gilbert, E. P., Gidley, M. J. (2015). Molecular, mesoscopic and microscopic structure evolution during amylase digestion of extruded maize and high amylose maize starches. Carbohydrate Polymers, 118, 224–234. [Google Scholar] [Crossref]

92. Soares, M. V. L., Alves Filho, E. G., Silva, L. M. A., Novotny, E. H., Canuto, K. M., Wurlitzer, N. J., Narain, N., and de Brito, E. S. (2017). Tracking thermal degradation on passion fruit juice through Nuclear Magnetic Resonance and chemometrics. Food Chemistry. https://doi.org/10.1016/j.foodchem.2016.09.127 [Google Scholar] [Crossref]

93. Sobolev, A. P., Circi, S., and Mannina, L. (2016). Advances in Nuclear Magnetic Resonance Spectroscopy for Food Authenticity Testing. In Advances in Food Authenticity Testing. https://doi.org/10.1016/B978-0-08-100220-9.00006-0 [Google Scholar] [Crossref]

94. Sopelana, P., Arizabaleta, I., Ibargoitia, M. L., and Guillén, M. D. (2013). Characterisation of the lipidic components of margarines by1H Nuclear Magnetic Resonance. Food Chemistry. https://doi.org/10.1016/j.foodchem.2013.06.026 [Google Scholar] [Crossref]

95. Srikaeo, K., and Rahman, M. S. (2018). Proton relaxation of waxy and non-waxy rice by low field nuclear magnetic resonance (LF-NMR) to their glassy and rubbery states. Journal of Cereal Science. https://doi.org/10.1016/j.jcs.2018.05.014 [Google Scholar] [Crossref]

96. Sun, Y., Zhang, M., and Fan, D. (2019). Effect of ultrasonic on deterioration of oil in microwave vacuum frying and prediction of frying oil quality based on low field nuclear magnetic resonance (LF-NMR). Ultrasonics Sonochemistry, 51(October 2018), 77–89. https://doi.org/10.1016/j.ultsonch.2018.10.015 [Google Scholar] [Crossref]

97. Taglienti, A., Sequi, P., Cafiero, C., Cozzolino, S., Ritota, M., Ceredi, G., and Valentini, M. (2011). Hayward kiwifruits and Plant Growth Regulators: Detection and effects in post-harvest studied by Magnetic Resonance Imaging and Scanning Electron Microscopy. Food Chemistry, 126(2), 731–736. [Google Scholar] [Crossref]

98. Tan, J., and Balasubramanian, B. M. (2017). Particle size measurements and scanning electron microscopy (SEM) of cocoa particles refined/conched by conical and cylindrical roller stone melangers. Journal of Food Engineering, 212, 146–153. [Google Scholar] [Crossref]

99. Tan, M. C., Chin, N. L., Yusof, Y. A., and Abdullah, J. (2016). Novel 2D and 3D imaging of internal aerated structure of ultrasonically treated foams and cakes using X-ray tomography and X-ray microtomography. Journal of Food Engineering. https://doi.org/10.1016/j.jfoodeng.2016.03.008 [Google Scholar] [Crossref]

100. Tan, M., Lin, Z., Zu, Y., Zhu, B., and Cheng, S. (2018). Effect of multiple freeze-thaw cycles on the quality of instant sea cucumber: Emphatically on water status of by LF-NMR and MRI. Food Research International. https://doi.org/10.1016/j.foodres.2018.04.029 [Google Scholar] [Crossref]

101. Traffano-Schiffo, M. V., Laghi, L., Castro-Giraldez, M., Tylewicz, U., Romani, S., Ragni, L., Rosa, M. D., and Fito, P. J. (2017). Osmotic dehydration of organic kiwifruit pre-treated by pulsed electric fields: Internal transport and transformations analyzed by NMR. Innovative Food Science and Emerging Technologies, 41, 259–266. https://doi.org/10.1016/j.ifset.2017.03.012 [Google Scholar] [Crossref]

102. Tylewicz, U., Aganovic, K., Vannini, M., Toepfl, S., Bortolotti, V., Dalla Rosa, M., Oey, I., and Heinz, V. (2016). Effect of pulsed electric field treatment on water distribution of freeze-dried apple tissue evaluated with DSC and TD-NMR techniques. Innovative Food Science and Emerging Technologies. https://doi.org/10.1016/j.ifset.2016.06.012 [Google Scholar] [Crossref]

103. van Duynhoven, J. P. M. (2017). Food and Nutritional Science, Applications of Magnetic Resonance. In J. C. Lindon, G. E. Tranter, and D. W. Koppenaal (Eds.), Encyclopedia of Spectroscopy and Spectrometry (Third Edition) (Third Edit, pp. 678–685). Academic Press. https://doi.org/https://doi.org/10.1016/B978-0-12-803224-4.00092-3 [Google Scholar] [Crossref]

104. Verbi Pereira, F. M., Rebellato, A. P., Lima Pallone, J. A., and Colnago, L. A. (2015). Through-package fat determination in commercial samples of mayonnaise and salad dressing using time-domain nuclear magnetic resonance spectroscopy and chemometrics. Food Control. https://doi.org/10.1016/j.foodcont.2014.02.028 [Google Scholar] [Crossref]

105. Verboven, P., Defraeye, T., and Nicolai, B. (2018). Measurement and visualization of food microstructure Fundamentals and recent advances. In Food Microstructure and its relationship with quality and stability. https://doi.org/10.1016/B978-0-08-100764-8.00001-0 [Google Scholar] [Crossref]

106. Wang, L., Zhang, M., Bhandari, B., and Yang, C. (2018). Investigation on fish surimi gel as promising food material for 3D printing. Journal of Food Engineering, 220, 101–108. https://doi.org/10.1016/j.jfoodeng.2017.02.029 [Google Scholar] [Crossref]

107. Wang, R., Li, M., Chen, S., Hui, Y., Tang, A., and Wei, Y. (2019). Effects of flour dynamic viscosity on the quality properties of buckwheat noodles. Carbohydrate Polymers, 207, 815–823. [Google Scholar] [Crossref]

108. Watanabe, H., Fukuoka, M., and Watanabe, T. (1995). Chapter 5 - Recent advances in characterization of foods using nuclear magnetic resonance (NMR). In A. G. Gaonkar (Ed.), Characterization of Food (pp. 117–149). Elsevier Science B.V. https://doi.org/https://doi.org/10.1016/B978-044481499-9/50006-8 [Google Scholar] [Crossref]

109. Wu, T., Jiang, Q., Wu, D., Hu, Y., Chen, S., Ding, T., Ye, X., Liu, D., and Chen, J. (2019). What is new in lysozyme research and its application in food industry? A review. In Food Chemistry. https://doi.org/10.1016/j.foodchem.2018.09.017 [Google Scholar] [Crossref]

110. Xiao, H.-W., and Gao, Z.-J. (2012). The Application of Scanning Electron Microscope (SEM) to Study the Microstructure Changes in the Field of Agricultural Products Drying. In Scanning Electron Microscopy (pp. 213–227). [Google Scholar] [Crossref]

111. Xiao, Z., Li, Y., Wu, X., Qi, G., Li, N., Zhang, K., Wang, D., and Sun, X. S. (2013). Utilization of sorghum lignin to improve adhesion strength of soy protein adhesives on wood veneer. Industrial Crops and Products, 50, 501–509. [Google Scholar] [Crossref]

112. Xu, B. G., Zhang, M., Bhandari, B., Sun, J., and Gao, Z. (2016). Infusion of CO2 in a solid food: A novel method to enhance the low-frequency ultrasound effect on immersion freezing process. Innovative Food Science and Emerging Technologies, 35, 194–203. https://doi.org/10.1016/j.ifset.2016.04.011 [Google Scholar] [Crossref]

113. Yu, H. Y., Wang, L., and McCarthy, K. L. (2016). Characterization of yogurts made with milk solids nonfat by rheological behavior and nuclear magnetic resonance spectroscopy. Journal of Food and Drug Analysis. https://doi.org/10.1016/j.jfda.2016.04.002 [Google Scholar] [Crossref]

114. Zhang, L., Lou, Y., and Schutyser, M. A. I. (2018). 3D printing of cereal-based food structures containing probiotics. Food Structure, 18, 14–22. [Google Scholar] [Crossref]

115. Zhao, X., Chen, J., Zhu, Q., Du, F., Ao, Q., and Liu, J. (2011). Surface characterization of 7S and 11S globulin powders from soy protein examined by X-ray photoelectron spectroscopy and scanning electron microscopy. Colloids and Surfaces B: Biointerfaces, 82(2), 260–266. [Google Scholar] [Crossref]

116. Zhao, Y., Yao, Y., Xiao, M., Chen, Y., Lee, C. C. C., Zhang, L., Zhang, K. X., Yang, S., and Gu, M. (2013). Rapid detection of Cronobacter sakazakii in dairy food by biofunctionalized magnetic nanoparticle based on nuclear magnetic resonance. Food Control. https://doi.org/10.1016/j.foodcont.2013.05.004 [Google Scholar] [Crossref]

Metrics

Views & Downloads

Similar Articles