The Sustainability–Income Paradox: A Mixed-Methods Analysis of the Economic Disincentives for Integrated Pest Management Adoption among Liberian Smallholders

Authors

Lee Diamond Campbell

Department of International Economics and Trade, College of Economics Sichuan Agricultural University, Chengdu, Sichuan Province (China)

Article Information

DOI: 10.51584/IJRIAS.2025.1015SP0001

Subject Category: Agriculture

Volume/Issue: 10/15 | Page No: 01-18

Publication Timeline

Submitted: 2025-09-10

Accepted: 2025-09-17

Published: 2025-10-22

Abstract

Integrated Pest Management (IPM) encourages an ecological alternative to farming that relies on high pesticide use, but smallholders in Liberia are slow to adopt it. This paper analyzes the so-called sustainability-income paradox, which posits that environmentally friendly practices are economically inviable in the short-run. I integrate survey data from 600 households with data collected through focus group discussions and key informant interviews to identify drivers and inhibitors of IPM adoption. The research used a mixed-methods design. The findings from econometric analyses revealed that access to extension services and education significantly increase adoption, while adoption is deterred by pesticide subsidies and high-risk aversion. A cost analysis demonstrates that while IPM can save on chemicals inputs, it increases labor and biological inputs costs, which appear prohibitive to farmers who lack liquidity.
Qualitative findings show that farmers are concerned about time intensity, uncertainty about yields, and the lack of market premiums for safer produce. Collectively, the results revealed that systemic economic disincentives, rather than environmental ignorance, are the primary barrier to adoption. Policy implications include subsidy reform, enhanced extension outreach, and the development of market incentives for residue-free crops. These adjustments could align smallholder decision-making with long-term sustainability goals. This research, set in a fragile-state environment, demonstrates that sustainable modifications to agricultural systems are often undermined by short-term economic pressures that institutional adjustments alone cannot counteract.

Keywords

Integrated Pest Management (IPM); Liberia; Sustainability–Income Paradox; Smallholder Farmers

Downloads

References

1. Abang, A. F., Ramasamy, S., & Jalloh, M. M. (2014). Adoption of integrated pest management in Africa: Constraints and prospects. Journal of Crop Protection, 65, 65–72. [Google Scholar] [Crossref]

2. Aker, J. C. (2011). Dial “A” for agriculture: Using information and communication technologies for agricultural extension in developing countries. Agricultural Economics, 42(6), 631– 647. [Google Scholar] [Crossref]

3. Amoabeng, B. W., Asumadu, J. O., & Nutsukpui, S. (2020). Sustainable pest management: Assessing IPM adoption in African vegetable systems. Agronomy for Sustainable Development, 40(1), 1–11. [Google Scholar] [Crossref]

4. Anderson, J., Clay, D. C., & Jayne, T. S. (2016). Agriculture and institutional rebuilding in post-conflict Liberia. Food Policy, 62, 81–92. [Google Scholar] [Crossref]

5. Anderson, J. R., & Feder, G. (2007). Agricultural extension. In R. Evenson & P. Pingali (Eds.), Handbook of Agricultural Economics (Vol. 3, pp. 2343–2378). Elsevier. [Google Scholar] [Crossref]

6. Andersson, J. A., & D'Souza, S. (2014). From adoption claims to understanding farmers and contexts: A literature review of conservation agriculture in Africa. Agriculture, Ecosystems & Environment, 187, 116–132. [Google Scholar] [Crossref]

7. Asfaw, S., Mithofer, D., & Waibel, H. (2010). Agrifood supply chain, public standards, and farmers' compliance: The case of GLOBALGAP in Kenya. Agricultural Economics, 41(3-4), 341–356. [Google Scholar] [Crossref]

8. Baidoo, P. K., Bugri, J. N., & Dwomoh, E. O. (2012). Farmer perceptions of IPM in Ghana. International Journal of Pest Management, 58(4), 313–320. [Google Scholar] [Crossref]

9. Barzman, M., Barberi, P., Birch, A. N. E., Boonekamp, P., Dachbrodt-Saaydeh, S., Graf, B., Hommel, B., Jensen, J. E., Kiss, J., Kudsk, P., Lamichhane, J. R., Messéan, A., Moonen, A. C., Ratnadass, A., Ricci, P., Sarah, J. L., & Sattin, M. (2015). Eight principles of integrated pest management. Agronomy for Sustainable Development, 35(4), 1199–1215. [Google Scholar] [Crossref]

10. Baulcombe, D., Crute, I., & Johnson, B. (2009). Reaping the benefits: Science and the sustainable intensification of global agriculture. The Royal Society. [Google Scholar] [Crossref]

11. Bekele, W., Kassie, M., & Jaleta, M. (2018). Adoption of sustainable agricultural practices in Ethiopia: Evidence from cereal farmers. Land Use Policy, 73, 18–29. [Google Scholar] [Crossref]

12. Bellon, M., & Hellin, J. (2011). Planting hybrids, keeping landraces: Agricultural modernization and IPM. World Development, 39(8), 1434–1443. [Google Scholar] [Crossref]

13. Bentley, J. (2009). Impact of farmer training in integrated pest management. World Development, 37(10), 1723–1735. [Google Scholar] [Crossref]

14. Berg, H., & Tam, N. T. (2012). Costs and benefits of IPM in rice in Vietnam. Crop Protection, 31(1), 1–5. [Google Scholar] [Crossref]

15. Bonye, S. Z., Djokoto, J. G., & Ozor, E. N. (2022). Smallholder farmers' pesticide uses and health risks in Sub-Saharan Africa. Sustainability, 14(7), 3952. [Google Scholar] [Crossref]

16. Cartwright, S. (2022). Agricultural governance in fragile states: Evidence from Liberia. Journal of African Economies, 31(2), 152–174. [Google Scholar] [Crossref]

17. Chirwa, E., & Dorward, A. (2013). Agricultural input subsidies: Theories and evidence. Oxford University Press. [Google Scholar] [Crossref]

18. Chibwana, C., Fisher, M., & Shively, G. (2012). Cropland allocation effects of agricultural input subsidies in Malawi. World Development, 40(1), 124–133. [Google Scholar] [Crossref]

19. Cowan, N., Rada, N. E., & Moreira, M. V. (2018). Risk, time preferences, and technology adoption: Evidence from African agriculture. World Development, 111, 182–195. [Google Scholar] [Crossref]

20. Danso-Abbeam, G., & Baiyegunhi, L. (2017). Adoption of sustainable agricultural practices among cocoa farmers in Ghana. Journal of Cleaner Production, 164, 1242–1250. [Google Scholar] [Crossref]

21. Davis, K. (2008). Extension in sub-Saharan Africa: Overview and assessment of past and current models. Journal of International Agricultural and Extension Education, 15(3), 15–28. [Google Scholar] [Crossref]

22. Davis, K., Nkonya, E., & Kato, E. (2012). Impact of farmer field schools on agricultural productivity and poverty in East Africa. World Development, 40(2), 402–413. [Google Scholar] [Crossref]

23. Delcour, I., Spanoghe, P., & Uyttendaele, M. (2015). Literature review: Impact of climate change on pesticide use. Food Research International, 68, 7–15. [Google Scholar] [Crossref]

24. Dercon, S., & Christiaensen, L. (2011). Consumption risk, technology adoption and poverty traps: Evidence from Ethiopia. Journal of Development Economics, 96(2), 159–173. [Google Scholar] [Crossref]

25. Ehler, L. E. (2006). Integrated pest management (IPM): Definition, historical development and implementation. Integrated Pest Management Reviews, 7(1), 1–10. [Google Scholar] [Crossref]

26. EPA Liberia. (2019). Pesticide Regulatory System Report. Monrovia: Environmental Protection Agency. [Google Scholar] [Crossref]

27. FAO. (2021). GIEWS Country Brief: Liberia. Rome: Food and Agriculture Organization. [Google Scholar] [Crossref]

28. Feder, G., Just, R. E., & Zilberman, D. (1985). Adoption of agricultural innovations in developing countries. Economic Development and Cultural Change, 33(2), 255–298. [Google Scholar] [Crossref]

29. Feder, G., & Umali, D. L. (1993). The adoption of agricultural innovations: A review. Technological Forecasting and Social Change, 43(3-4), 215–239. [Google Scholar] [Crossref]

30. Garnett, T., Godfray, C., & Charles, H. (2013). Sustainable intensification in agriculture: Premises and policies. Science, 341(6141), 33–34. [Google Scholar] [Crossref]

31. Glover, D., Sumberg, J., & Andersson, J. (2019). The adoption problem; or why we still understand so little about technological change in African agriculture. Outlook on Agriculture, 48(1), 4–10. [Google Scholar] [Crossref]

32. Guo, Z., Huang, H., & Huang, J. (2020). Incentives for IPM adoption in China. Ecological Economics, 176, 106724. [Google Scholar] [Crossref]

33. Haggblade, S., & Tembo, G. (2003). Development of conservation farming systems in Zambia. Food Policy, 28(4), 335–351. [Google Scholar] [Crossref]

34. Harrison, R. D., Day, R., & Prasanna, B. M. (2019). Fall armyworm invasion in Africa. Nature Plants, 5(10), 930–933. [Google Scholar] [Crossref]

35. Hellin, J., Shiferaw, B., & Muricho, G. (2014). Input subsidies and agricultural sustainability in Africa. Food Security, 6(2), 329–340. [Google Scholar] [Crossref]

36. Holden, S., & Lunduka, R. (2012). Do fertilizer subsidies crowd out organic manures? The case of Malawi. Agricultural Economics, 43(3), 303–314. [Google Scholar] [Crossref]

37. Huang, J., Pray, C., & Qiao, F. (2015). Adoption of IPM in China: Evidence from rice farmers. Journal of Environmental Economics and Management, 71, 102–120. [Google Scholar] [Crossref]

38. Jack, B. K. (2013). Market inefficiencies and the adoption of agricultural technologies in developing countries. Annual Review of Resource Economics, 5(1), 327–350. [Google Scholar] [Crossref]

39. Jayne, T. S., Mather, D., & Mghenyi, E. (2010). Principal challenges confronting smallholder agriculture in Sub-Saharan Africa. World Development, 38(10), 1384–1398. [Google Scholar] [Crossref]

40. Johnson, M., & Brown, A. (2020). Agricultural regulation and pesticide management in Liberia. African Journal of Policy Studies, 25(3), 88–103. [Google Scholar] [Crossref]

41. Jones, K., Tione, S. E., & Asante, F. A. (2019). Market incentives for sustainable agriculture: Lessons from Africa. Food Policy, 85, 15–25. [Google Scholar] [Crossref]

42. Kansiime, M. K., Byarugaba, A. B. M., & Kang'ara, J. H. N. (2017). IPM adoption in smallholder maize systems in Uganda. Food Security, 9(4), 759–774. [Google Scholar] [Crossref]

43. Kassie, M., Zikhali, P., & Pender, J. (2018). Adoption of sustainable agricultural practices in Africa: Evidence from Ethiopia. Land Use Policy, 75, 57–65. [Google Scholar] [Crossref]

44. Kassie, M., Jaleta, M., & Mattei, A. (2015). Agricultural technology, crop income, and poverty alleviation in Uganda. World Development, 66, 130–143. [Google Scholar] [Crossref]

45. Kaur, H. (2018). Integrated pest management in Indian agriculture: Status and challenges. Indian Journal of Agricultural Economics, 73(3), 301–313. [Google Scholar] [Crossref]

46. Kibwage, J., Netondo, G., & Odondo, A. (2008). Constraints to IPM adoption in Kenyan horticulture. Journal of Sustainable Agriculture, 32(2), 109–123. [Google Scholar] [Crossref]

47. Kogan, M. (1998). Integrated pest management: Historical perspectives and future directions. Annual Review of Entomology, 43(1), 243–270. [Google Scholar] [Crossref]

48. Koul, O., & Cuperus, G. (2007). Ecologically based integrated pest management. CAB International. [Google Scholar] [Crossref]

49. Lee, D. R. (2005). Agricultural sustainability and technology adoption: Issues and policies for developing countries. American Journal of Agricultural Economics, 87(5), 1325–1334. [Google Scholar] [Crossref]

50. Lee, D. R., Edmeades, S., & De Nys, E. (2019). Economic evaluation of IPM adoption in smallholder systems. Agricultural Economics, 50(3), 349–362. [Google Scholar] [Crossref]

51. LIPC. (2018). Liberia Input Provision Chain Report. Monrovia: Liberia Input Provision Consortium. [Google Scholar] [Crossref]

52. Liverpool-Tasie, L. S. O., Omonona, B. T., & Sanou, A. (2017). Fertilizer subsidies and technology adoption in Nigeria. American Journal of Agricultural Economics, 99(3), 659–682. [Google Scholar] [Crossref]

53. Liverpool-Tasie, L. S. O., Kuku, O., & Salau, S. (2016). Nigeria's agricultural transformation agenda: Repositioning agriculture for prosperity. Food Policy, 62, 124–133. [Google Scholar] [Crossref]

54. Marenya, P. P., & Barrett, C. B. (2009). State-conditional fertilizer yield response on Western Kenyan farms. American Journal of Agricultural Economics, 91(4), 991–1006. [Google Scholar] [Crossref]

55. Martey, E., Etwire, P. M., & Al-Hassan, R. M. (2019). Input subsidies and adoption of sustainable practices among Ghanaian farmers. Agricultural Economics, 50(6), 729–741. [Google Scholar] [Crossref]

56. Mason, N. M., & Ricker-Gilbert, J. (2013). Disrupting demand for commercial seed: Input subsidies in Malawi and Zambia. World Development, 45, 75–91. [Google Scholar] [Crossref]

57. Mather, D., & Jayne, T. S. (2018). Fertilizer subsidies and smallholder productivity. Food Policy, 76, 122–134. [Google Scholar] [Crossref]

58. Mengistie, B. T., Mol, A. P. J., & Oosterveer, P. (2017). Pesticide use practices among Ethiopian farmers. Science of the Total Environment, 574, 1164–1171. [Google Scholar] [Crossref]

59. Midega, C. A. O., Pittchar, J., & Khan, Z. R. (2015). Sustainable intensification of maize-legume cropping systems through push-pull technology. Field Crops Research, 171, 49–57. [Google Scholar] [Crossref]

60. Midingoyi, S. K., Akinbode, S. A., & Alene, A. D. (2019). Risk aversion and adoption of sustainable agricultural practices in Africa. Agricultural Systems, 173, 414–424. [Google Scholar] [Crossref]

61. Mutyambai, D. M., Subramanian, S., & Tefera, T. (2016). Adoption of push-pull technology in East Africa. Field Crops Research, 188, 24–35. [Google Scholar] [Crossref]

62. Naranjo, S. E. (2017). IPM: Advances and challenges in the 21st century. Pest Management Science, 73(5), 772–782. [Google Scholar] [Crossref]

63. Naranjo, S. E., Ellsworth, P. C., & Frisvold, G. B. (2015). Economic analysis of IPM in cotton. Ecological Applications, 25(6), 1860–1873. [Google Scholar] [Crossref]

64. Ngowi, A. V. F., Mbise, T. J., & Ijani, S. M. (2007). Smallholder pesticide uses in Tanzania. Crop Protection, 26(11), 1617–1624. [Google Scholar] [Crossref]

65. Nkonya, E., Mirzabaev, A., & von Braun, J. (Eds.). (2016). Economics of land degradation and improvement in Tanzania. Springer International Publishing. [Google Scholar] [Crossref]

66. Norton, G. W., Ngang'a, E. M., & Shifa, M. (2019). Scaling up integrated pest management: Lessons from Asia and Africa. Crop Protection, 115, 142–150. [Google Scholar] [Crossref]

67. Oerke, E. C. (2006). Crop losses to pests. Journal of Agricultural Science, 144(1), 31–43. [Google Scholar] [Crossref]

68. Okello, J. J., & Swinton, S. M. (2010). From circle of poison to circle of virtue: Pesticides, export standards, and Kenya's green bean farmers. Journal of Agricultural Economics, 61(2), 209–224. [Google Scholar] [Crossref]

69. Ortiz, O. (2010). Learning from farmers: IPM in the Andes. Agricultural Systems, 103(1), 27–36. [Google Scholar] [Crossref]

70. Peshin, R., & Zhang, W. (2014). Integrated pest management: Adoption and impact. Springer Handbook of Pest Management. [Google Scholar] [Crossref]

71. Pimentel, D., & Burgess, M. (2014). Environmental and economic costs of pesticide use. In Integrated Pest Management (pp. 47–71). Springer. [Google Scholar] [Crossref]

72. Pretty, J., & Bharucha, Z. P. (2015). Integrated pest management for sustainable intensification of agriculture in Asia and Africa. Insects, 6(1), 152–182. [Google Scholar] [Crossref]

73. Richards, P., Gboku, J. J. F., & Jusu, S. M. (2020). Farming, risk, and pest control in West Africa: Historical perspectives. Journal of Modern African Studies, 58(3), 389–412. [Google Scholar] [Crossref]

74. Richards, P., Bah, K., & Vincent, J. (2005). Social capital and survival: Prospects for community-driven development in post-war Sierra Leone. World Development, 33(5), 905–924. [Google Scholar] [Crossref]

75. Rockström, J., Williams, J., & Daily, G. (2017). Sustainable intensification of agriculture for human prosperity and global sustainability. Ambio, 46(1), 4–17. [Google Scholar] [Crossref]

76. Rola, A. C., Jamias, S. B., & Quizon, J. B. (2002). Do farmer field school graduates retain and share what they learn? Journal of International Agricultural and Extension Education, 9(1), 65–76. [Google Scholar] [Crossref]

77. Snapp, S. S., Blackie, M. J., & Donovan, C. (2010). Biodiversity can support a greener revolution in Africa. Proceedings of the National Academy of Sciences, 107(48), 20840–20845. [Google Scholar] [Crossref]

78. Tambo, J. A., Mutyambai, I. R., & Qaim, M. (2024). Are farm input subsidies a disincentive for integrated pest management adoption? Evidence from Zambia. Journal of Agricultural Economics, 75(2), 740–763. [Google Scholar] [Crossref]

79. Tittonell, P., & Giller, K. E. (2013). When yield gaps are poverty traps: The paradigm of ecological intensification in African smallholder agriculture. Field Crops Research, 143, 76–90. [Google Scholar] [Crossref]

80. Tripp, R., Wijeratne, M., & Piyadasa, V. H. (2005). What should we expect from farmer field schools? A Sri Lanka case study. World Development, 33(10), 1705–1720. [Google Scholar] [Crossref]

81. Van den Berg, H. (2004). IPM farmer field schools: A synthesis of 25 impact evaluations. FAO. [Google Scholar] [Crossref]

82. Van den Berg, H., & Jiggins, J. (2007). Investing in farmers: The impacts of farmer field schools in relation to integrated pest management. World Development, 35(4), 663–686. [Google Scholar] [Crossref]

83. Williamson, S., Ball, A., & Pretty, J. (2008). Chemical pesticide risks in Sub-Saharan Africa. Outlook on Agriculture, 37(2), 93–98. [Google Scholar] [Crossref]

84. Winarto, Y. T. (2004). Seeds of knowledge: The beginning of integrated pest management in Java. Yale University Press. [Google Scholar] [Crossref]

85. World Bank. (2017). Liberia WAAPP Pest Management Plan. Washington, DC. [Google Scholar] [Crossref]

86. World Bank. (2022). Improving Service Delivery in Liberia's Agriculture Sector. Washington, DC. [Google Scholar] [Crossref]

87. Xu, Z., Guan, Z., & Jayne, T. S. (2009). Fertilizer subsidies, agricultural productivity, and food security in Malawi. Agricultural Economics, 40(5), 519–533. [Google Scholar] [Crossref]

88. Yesuf, M., & Bluffstone, R. A. (2009). Poverty, risk aversion, and path dependence in low-income countries: Experimental evidence from Ethiopia. American Journal of Agricultural Economics, 91(4), 1022–1037. [Google Scholar] [Crossref]

Metrics

Views & Downloads

Similar Articles